When you have got yourself acquainted with the research, then you have to write the report on circular economy indicating how circular economy is applied by the three chosen brands (one brand from each tier).
AssessmentTask 2
Individual Critical Analysis Linking Marketing and Management
Sustainability
Assessment Task 2: Overview
• Assessment task 1 will contribute 30% to your subject overall grade.
• It aims for the learner to
• Examine how some leading brands in RMG industry apply circular economy model to its
manufacturing processes.
• Examine how the application of circular economy model can generate value for the brand
and its customers.
• Students must not contact the organisation directly. The case must be based on material available
in the public domain.
• This is an individual report.
• The report should demonstrate your ability to present a well written and well-structured report
• You should submit using the Moodle (LMS) submission link for this assignment.
1. Coversheet (1%)
• Provide title of the report, student full name and student number, subject code and title, and
name of teacher
2. Table of contents (2%)
• Report contents (headings/sub-headings) and their page numbers
3. Background to the case and demonstration of the body of knowledge (17%)
• Definition of circular economy, its three approaches, and its relation to sustainability.
• The purpose of this report, scope, and structure, including the companies which have been
chosen
4. Demonstration of the body of knowledge and ability to extend it to review (18%)
Brands Resources (inputs) used
Raw materials
Energy
How used/managed?
How sustainable are these
inputs?
Brand 1
Brand 2
Brand 3
Compare and discuss the key analysis from the table
Focus on issues of resources and how they are used and managed in a business context (for the
three/3 chosen brands). The discussion should include:
• Resources (inputs) used by the chosen three brand in manufacturing three products
• How they are used and managed in a business context (For these three brands).
The following template can be used:
• Use three fundamental approaches applied as we seek to address this – strategies to
narrow, slow, and close resource loops.
• More details are in the next page.
5. Explanation of the case and synthesis with the theory (15%)
Brand Narrow Slow Close
Brand 1
Brand 2
Brand 3
5. Explanation of the case and synthesis with the theory (15%)
Compare and discuss the key analysis from the table
A discussion on how the three chosen brands apply the three circular economy approaches on their resources
/ inputs (raw materials and type of energy). The following template can be used:
6. Analysis of the situation: explain value dimensions (30%)
Value dimension Company actvities
Value Proposition What value is proposed and to whom?
What product is offered and what position does it take in consumer’s
mind: low cost product, high quality product, etc.?
Target segment(s): who are the target consumers of the product:
demographics, psychographics, etc.
Value Creation and
Delivery
How do the three approaches of circular economy help the brand create
value? What circular economy key activities, key resources, and
capabilities help the brand create value?
Value Capture How is value captured? What marketing benefits does each brand gain
from applying circular economy in its manufacturing? Revenues, sales,
profit, market share, consumer loyalty?
Compare and discuss the key analysis from the table
A discussion on the application three approaches of circular economy generate value for the three
chosen brands. The following template can be used (repeat for all three brands) :
• Demonstrate your ability to present a well written and well-structured
report
• Report should be free from grammar and typing errors.
• Use headings and sub-headings where appropriate and number them, e.g. 1.
Introduction, 2. Company background, etc.
• Write approximately 1,500 words (maximum 1,750 words).
• Use Calibri 12 point font, 1.5 line spacing.
• Start a new paragraph when a new or different point/topic/issue is to be
discussed. Avoid using very large paragraphs.
• Include relevant tables, graphs, and figures (whichever is applicable).
• Use colours and images where appropriate; make your report look interesting.
7. Scholarly pursuit: presentation, grammar, and spelling (10%)
• An assignment without references and in-text citation will not be marked!
• Use Harvard referencing. You may use the following Academic Referencing Tool for
detailed instructions on how to reference using Harvard:
– https://www.lib.latrobe.edu.au/referencing-tool/
• 10 references are expected. Use at least four academic references (peer reviewed journal
articles, conference papers, textbook, etc).
• Use recent company / industry reports.
• Do not use Wikipedia as a reference. Rather, you may use academically acceptable
references used by Wikipedia.
• List the references used at the end of the report. The reference list is not included in the
word count.
• All references in the list should be cited in the text.
• Include an in-text citation when you refer to, summarize, paraphrase, or quote from
another source.
8. References (10%)
https://www.lib.latrobe.edu.au/referencing-tool/
https://www.lib.latrobe.edu.au/referencing-tool/
https://www.lib.latrobe.edu.au/referencing-tool/
Assessment Task 2: Individual Critical Analysis Linking Marketing and Management Sustainability
Criteria Scale
High Distinction Distinction Credit Pass Inadequate
Introductory pages:
Cover sheet (1%)
Table of Contents
(2%)
The submission has
demonstrated perfect
identification of all the required
items of each section
The submission has
demonstrated competence in
identifying the required
items of each section
The submission has
demonstrated a developing
approach in identifying the
required items of each section
The submission has met the
minimum requirement in
identifying the required items
of each section
The submission has not met
the minimum requirement in
identifying the required items
of each section
Background to the
case
(17%)
The submission demonstrated a
perfect identification of the
companies and case background
relevant to term circular
economy.
The submission
competently identifies the
companies and case
background relevant to term
circular economy.
The submission demonstrated a
developing identification of the
companies and case background
relevant to term circular
economy.
The submission has met the
baseline requirements for
identifying the companies and
case background relevant to term
circular economy.
The submission has not met
the baseline requirements for
identifying the companies and
case background relevant to
term circular economy.
Demonstration of
the body of
knowledge and
ability to extend it
to review
(18%)
The submission is a perfect
demonstration of the body of
knowledge exceeding the
requirement in identifying the
issues of resources and how they
are used and managed in a
business context for six identified
brands.
The submission has
demonstrated a competent
demonstration of the body of
knowledge in identifying the
issues of resources and how
they are used and managed in
a business context for six
identified brands.
The submission has
demonstrated a developing
approach to the body of
knowledge in identifying the
issues of resources and how they
are used and managed in a
business context for six identified
brands.
The submission has met the
requirement in demonstrating
the body of knowledge in
identifying the issues of
resources and how they are used
and managed in a business
context for six identified brands.
The submission has not met
the requirement, nor has it
identified the issues of
resources and how they are
used and managed in a
business context for six
identified brands.
Explanation of the
case and synthesis
with the theory
(18%)
The submission has
demonstrated perfect
identification of the
fundamental approaches –
strategies to narrow, slow and
close resource loops.
The submission has
demonstrated competence
in identifying the fundamental
approaches – strategies to
narrow, slow and close
resource loops.
The submission has
demonstrated a developing
approach in identifying the
fundamental approaches –
strategies to narrow, slow and
close resource loops.
The submission has met the
minimum requirement to
identify the fundamental
approaches – strategies to
narrow, slow and close resource
loops.
The submission has not met
the minimum requirement to
identify the fundamental
approaches – strategies to
narrow, slow and close
resource loops.
Analysis of the
situation (value
proposition,
creation and
delivery, and
capture) (24%)
The submission has
demonstrated perfect analysis to
explain the value dimensions:
value proposition, value creation
and delivery and value capture.
The submission has
competently met the
requirement to explain the
value dimensions: value
proposition, value creation and
delivery and value capture.
The submission has shown a
developing ability to explain the
value dimensions: value
proposition, value creation and
delivery and value capture.
The submission has met the
minimum requirement to explain
the value dimensions: value
proposition, value creation and
delivery and value capture.
The submission has not met
the minimum requirement to
explain the value dimensions:
value proposition, value
creation and delivery and value
capture.
Ability to present a
well written and
well-structured
report (10%)
An excellent constructed and
presented assignment. Free of
spelling, grammatical,
punctuation and typing errors.
Well written and presented
assignment. Minor spelling,
grammatical, punctuation and
typing errors.
Reasonably written and
presented assignment. Some
spelling, grammatical,
punctuation and typing errors.
A coherent assignment but needs
to address numerous errors in
presentation including spelling,
punctuation and grammar.
Poorly written and presented
assignment. Major spelling,
grammatical, punctuation and
typing errors.
Use of credible
references and able
to reference
correctly (10%)
Excellent reference list which
contains a wide range of sources.
Presently correctly.
Good reference list which
contains an adequate range of
sources. Odd error in style
Reasonable reference list but
needed more sources. Some
referencing errors.
Reference list is limited and
needs wider range of sources. A
number of errors.
Major errors in referencing
1/19/2020 Subject: 2019-BUS5SMM(BU-SUM1/CB-SUM1) – SUSTAINABLE MANAGEMENT & MARKETING
https://lms.latrobe.edu.au/course/view.php?id=72681 2/9
Topic 1 Topic 2 Topic 3
Topic 4 Topic 5 Topic 6
Topic 7 Topic 8 Topic 9
Topic 10 Topic 11 Topic 12
Resources
Reset user tour on this page
© Copyright 2018 La Trobe University. All rights reserved. La Trobe University CRICOS Provider Code Number 00115M
Data retention summary
Emergency information Child Safety Contacts Site map Accessibility Privacy Copyright and disclaimer
You are logged in as Vipul Padigela (Log out)
Students must not contact the organisation directly. The case must be based on material available in
the public domain.
Refer to ‘Assessment Task 1 – tasks and rubric’ document below for Assessment Task 1 detailed
instructions.
Assessment Task 1 – tasks and rubric:
Submitting the Assignment
This is an individual report. You should submit using the Moodle submission link for this assignment.
Please keep the Turnitin text similarity score at a minimum. Assignments with poor referencing, or 30%
similarity score or higher may be penalised and referred to Academic Integrity team.
Extensions: teaching staff will not be able to grant extensions to students. Students can seek
extensions from Special Consideration team no later than three business days after the assignment due
date.
Assessment 2 – Critical Analysis Assessing the Linkages between
Marketing & Management for Sustainability
Purpose:
This assessment will contribute 30% to your overall grade.
Details:
Source: www.dhakatribune.com
Business society and government nowadays are incredibly concerned because of the constant pressure
on the global environment. There is no disagreement that this is due to human activities. The never-
ending desire system in a modern consumer society is pushing for more production by using an
enormous amount of raw materials and energy to produce millions and millions of products and
consumption leading towards damaging the Earth’s natural system (Bocken, de Pauw, Bakker, and
Grinten, 2016). According to research on Anthropocene (Chakrabarty, 2015), because of this vicious
cycle of production, we are sending a massive amount of wastages into the waters, land, and
ecosystem or even to the atmosphere. One strong argument against the existing business model is
criticising the linear economies (i.e. Use materials and energy consumption for production by ejecting a
large number of materials as waste). Let us take a case to consider from RMG (Readymade Garments
or textile) industry. We cannot disregard the importance of the textile and clothing industry as it is
regarded as the fundamental part of everyday life and an essential employment source in the global
economy. It is almost impossible to think about a world without the RMG industry. More than 300
million people around the world are employed in this sector along the value chain and generating more
http://cricos.education.gov.au/Institution/InstitutionDetails.aspx?ProviderCode=00115M
https://lms.latrobe.edu.au/admin/tool/dataprivacy/summary.php
https://www.latrobe.edu.au/emergency
https://www.latrobe.edu.au/statements/child-safety
https://www.latrobe.edu.au/contact
https://www.latrobe.edu.au/sitemap
https://www.latrobe.edu.au/statements/accessibility
https://www.latrobe.edu.au/statements/privacy
https://www.latrobe.edu.au/statements/copyright
https://lms.latrobe.edu.au/user/profile.php?id=283615
https://lms.latrobe.edu.au/login/logout.php?sesskey=dSyiZwLNbg
https://lms.latrobe.edu.au/pluginfile.php/5151062/mod_label/intro/BUS5SMM%20-%20Assessment%20Task%201%20-%20tasks%20and%20rubric ?time=1573517129478
http://www.dhakatribune.com/
1/19/2020 Subject: 2019-BUS5SMM(BU-SUM1/CB-SUM1) – SUSTAINABLE MANAGEMENT & MARKETING
https://lms.latrobe.edu.au/course/view.php?id=72681 3/9
than USD 1.3 trillion a year. The production and distribution of cotton account for almost 7% of all
employment in the emerging markets. According to recent WTO �ndings, clothing production in the last
15 years has approximately doubled (see Figure 1).
Figure 1
Source: www.ellenmacarthurfoundation.org
The RMG sector incorporates production, distribution or even disposing of operations in an almost
entirely linear way, which also most of the time use large amounts of non-renewable resources that are
extracted to produce clothes. According to research more than half of fast fashion produced is
disposed of in under a year or less than a year. There are multiple challenges of the linear system ( e.g.,
puts pressure on resources, leaves economic opportunities untapped, and moreover, the natural
environment faces hazardous situation with pollutes and degrades). Along with these we also receive,
various negative societal impacts at local and global scales (see Figure 2). The economic value of these
negative externalities is challenging to quantify, although the recent Pulse of the fashion industry report
estimated that the overall bene�t to the world economy could be about EUR 160 billion (USD 192 billion)
in 2030 if the fashion industry were to address the environmental and societal fallout of the current
status quo. Less than 1% of the material used to produce clothing is recycled into new clothing,
representing a loss of more than USD 100 billion worth of materials each year. However, this has to
change! It is not di�cult to employ a better and sound business model or even make our economy
much more circular! The circular economy (Geissdoerfer, Savaget, Bocken, and Hultink, 2017), can
generate various bene�ts. The industry can get much more value with much less investment. By using a
sound approach like circular economy, we can reduce the burden is on the by reducing material and
energy consumption earth (Lewandowski, 2016).
Figure 2 Source: www.ellenmacarthurfoundation.org
http://www.ellenmacarthurfoundation.org/
http://www.ellenmacarthurfoundation.org/
1/19/2020 Subject: 2019-BUS5SMM(BU-SUM1/CB-SUM1) – SUSTAINABLE MANAGEMENT & MARKETING
https://lms.latrobe.edu.au/course/view.php?id=72681 4/9
Today, some of the biggest names in fashion are collaborating for the �rst time in a campaign to save
clothes from land�ll in different parts of the world. Ellen MacArthur Foundation is one of the
organizations that works with business, government and academia to build a framework for an
economy that is restorative and regenerative by design. It was established in 2010 to accelerate the
transition to a circular economy. Since its creation the charity has emerged as a global thought leader,
creating circular economy on the agenda of decision-makers across the business, government, and
academia.
Make Fashion Circular
In May 2017, Make Fashion Circular was originally launched as the Circular Fibres Initiative, at the
Copenhagen Fashion Summit. The initiative brings together leaders from across the fashion industry,
including brands, cities, philanthropists, NGOs, and innovators. It aims to stimulate the level of
collaboration and innovation necessary to create a new textiles economy, aligned with the principles of
the circular economy. One year later, at the 2018 Copenhagen Fashion Summit, the Circular Fibres
Initiative entered its second phase: Make Fashion Circular. To thrive, and not just survive, the fashion
industry needs to redesign its operating model radically. By transitioning to a circular system, where we
keep safe materials in use, the industry can unlock an enormous economic opportunity. To Make
Fashion Circular, businesses, governments, innovators, and citizens need to join forces. Make Fashion
Circular brings together industry leaders including Burberry, Gap Inc., H&M Group, HSBC, NIKE Inc., and
Stella McCartney as Core Partners. Make Fashion Circular has been made possible by C&A Foundation,
Walmart Foundation and the MAVA Foundation.
Circular economy’s three approaches
Circular economy has three approaches: Narrowing, Slowing, and Closing.
Instructions:
Assessment task 2 aims for the learner to
1. Think creatively about how to address the challenges and opportunities of value dimension of
marketing and management decisions and strategies in RMG circular economy.
2. Examine how some leading brands in RMG industry apply circular economy model (narrowing,
slowing, and closing) to their manufacturing processes.
3. Examine how the application of circular economy model can generate value for the brand and its
customers.
Students need to select one (1) of the brands from each of the following Tiers (Total 3 brands).
Where to start: We suggest that you begin by reading this page and then spend some time browsing the
following brands.
1/19/2020 Subject: 2019-BUS5SMM(BU-SUM1/CB-SUM1) – SUSTAINABLE MANAGEMENT & MARKETING
https://lms.latrobe.edu.au/course/view.php?id=72681 5/9
Step1: Doing Research and Collecting Secondary Data (Students must not contact the organisation
directly. The case must be based on material available in the public domain).
Step 2: Writing the Report
Tasks:
When you have got yourself acquainted with the research, then you have to write the report on circular economy
indicating how circular economy is applied by the three chosen brands (one brand from each tier).
Refer to “Assessment Task 2 – tasks, template, and rubric” document below for Assessment Task 2
detailed instructions.
Assessment Task 2 – tasks, template, and rubric: (updated on 18 January 2020)
Circular economy – recommended readings
Product design and business model strategies for a circular economy
Business models and supply chains for the circular economy
Additional Resources
https://lms.latrobe.edu.au/pluginfile.php/5151063/mod_label/intro/Assessment%20Task%202%20-%20tasks%2C%20template%2C%20and%20rubric
https://lms.latrobe.edu.au/pluginfile.php/5151063/mod_label/intro/Product%20design%20and%20business%20model%20strategies%20for%20a%20circular%20economy ?time=1578879381606
https://lms.latrobe.edu.au/pluginfile.php/5151063/mod_label/intro/Business%20models%20and%20supply%20chains%20for%20the%20circular%20economy ?time=1578879007430
1/19/2020 Subject: 2019-BUS5SMM(BU-SUM1/CB-SUM1) – SUSTAINABLE MANAGEMENT & MARKETING
https://lms.latrobe.edu.au/course/view.php?id=72681 6/9
Chakrabarty, D. (2015). The Anthropocene and the convergence of histories. In The Anthropocene and
the global environmental crisis (pp. 56-68). Routledge.
Geissdoerfer, M., Savaget, P., Bocken, N. M., & Hultink, E. J. (2017). The Circular Economy–A new
sustainability paradigm?. Journal of cleaner production, 143, 757-768.
Lewandowski, M. (2016). Designing the business models for circular economy—Towards the conceptual
framework. Sustainability, 8(1), 43.
HBR Readings:
Rethinking Sustainability in Light of the EU’s New Circular Economy Policy Atalay Atasu, Vishal Agrawal,
Michael Rinaldi Rob, Herb Sezer Ulku
Submitting the Assignment
This is an individual report. You should submit using the Moodle submission link for this assignment.
Please keep the Turnitin text similarity score at a minimum. Assignments with poor referencing, or 30%
similarity score or higher may be penalised and referred to Academic Integrity team.
Assessment 3 – Management Case Research and Analysis
Purpose:
This assessment will contribute 30% to your overall grade.
Details:
Women entrepreneurs play a signi�cant role in contributing to the growth of the global and local
economy. They are a signi�cant part of the global expedition for sustained economic development and
social progress. Indian born American businesswoman, Indra Krishnamurthy Nooyi was the
Chairperson and Chief Executive O�cer (CEO) of PepsiCo, one of the world’s leading food and beverage
companies. On August 14, 2006, Nooyi was named the successor to Steven Reinemund as chief
executive o�cer of the company effective October 1, 2006. Nooyi joined PepsiCo in 1994 and was
named the president and CFO in 2001. Nooyi has directed the company’s global strategy for more than
a decade and led PepsiCo’s restructuring, including the 1997 divestiture of its restaurants into Tricon,
now known as Yum! Brands. Nooyi also took the lead in the acquisition of Tropicana in 1998, and
merger with Quaker Oats Company, which also brought Gatorade to PepsiCo. In 2007 she became the
�fth CEO in PepsiCo’s 44 years history. Nooyi’s key contributions include promoting and supporting
socially responsible business practices, including taking on one of the planet’s most pressing problems,
climate change. Her commitment to global citizenship is evidenced by her multiyear growth strategy,
‘Performance with Purpose’. (Ray and Ray, 2011; P: 6).
Instructions:
Dear students for this assignment please watch the video and browse the details about PepsiCo
https://www.pepsico.com/sustainability/performance-with-purpose to understand the concept of
‘performance with purpose’
Students must not contact the organisation directly. The case must be based on material available in
the public domain.
https://www.pepsico.com/sustainability/performance-with-purpose
! 1
Product design and business model strategies for a circular economy
!
Sustainable Design & Manufacturing Conference, Seville, 12-14 April 2015.
Authors: Nancy M.P. Bocken, Conny Bakker and Ingrid de Pauw
!
Abstract
There is a growing need for and interest in the business concept of a circular economy. The
move to a circular economy brings with it a range of practical challenges for designers and
strategists in businesses that will need to facilitate this transformation from a linear take-
make-dispose model to a more circular model. This paper seeks to develop a framework to
guide designers and businesses strategists in the move from a linear to a circular economy.
The following research question is addressed: What are the product design and business
model strategies for businesses that want to move to a circular economy model? Building on
Stahel (1994, p. 179) he terminology of slowing, closing and narrowing resource loops is
introduced. A list of product design strategies and business model strategies for strategic
decision-makers is introduced based on this to facilitate the move to a circular economy.
1. Introduction
Governmental organisations as well as business representatives report an increasing
pressure on our global resources and the climate due to human activity (WBCSD, 2014;
IPCC, 2014). The circular economy is viewed as a promising approach to help reduce our
global sustainability pressures (European Commission, 2014; Ellen MacArthur Foundation,
2014). The Ellen MacArthur Foundation (2014) has helped popularise the move to a circular
economy with businesses. Europe (European Commission, 2014) and China have adopted
Circular Economy principles as part of their future strategies (Su et al., 2013). For example,
the move to a more circular economy for Europe is associated with strategies such as:
boosting recycling and preventing the loss of valuable materials; creating jobs and economic
growth; showing how new business models, eco-design and industrial symbiosis can move us
towards zero-waste; and reducing greenhouse emissions and environmental impacts
(European Commission, 2014).
The idea of a circular economy is not new and was given a theoretical foundation in the field
of industrial ecology in the early 1990s (Allenby et al., 1994; Su et al., 2013). Robert Ayres (in
Allenby et al., 1994) introduced the idea of industrial metabolisms: “At the most abstract level
of description, then, the metabolism of industry is the whole integrated collection of physical
processes that convert raw materials and energy, plus labour, into finished products and
wastes in a (more or less) steady-state condition” (p23). The ambition level of an industrial
ecology is to achieve an ideal state, one which resembles nature most. Such a system would
be characterised by “complete or nearly-complete internal cycling of materials.” Ayres also
observes that such a closed cycle of flows can only be sustained as long as its external
energy supply lasts. According to Ayres, a logical consequence of striving to create closed
loop systems is that there are only two possible long-run fates for waste materials: either
recycling and reuse, or dissipative loss (for resources such as for lubricants or detergents).
The circular approach contrasts with the traditional linear business model of production of
take-make-use-dispose and an industrial system largely reliant on fossil fuels, because the
aim of the business shifts from generating profits from selling artefacts, to generating profits
from the flow of materials and products over time (Bakker et al., 2014). Circular business
models thus can enable economically viable ways to continually reuse products and
materials, using renewable materials where possible.
Since the first use of the concept of the circular economy the terminology around the ‘circular
economy’ has been diverging rather than converging and the terms closed loop and ‘circular’
economy are often used in parallel. Although these terms might be used synonymously, in
this paper, the terminology of a ‘circular economy’ is used. It is argued that at the product
design level and the strategic level of business model innovation, a more coherent
! 2
terminology is appropriate and desirable to facilitate the move of businesses to a circular
model. In this paper, a range of strategies for product design and business model innovation
for a circular economy are developed based on the literature to give clarity and direction to
designers and strategic decision makers in businesses wanting to pursue a circular business
model. The following research question is addressed: What are the product design and
business model strategies for businesses wanting to move to a circular economy model?
2. Literature review on circular design and business model strategies
The literature review brings together the relevant literature on circular product design and
circular business models to develop a terminology and a framework of strategies for closed
loop design and business models for a closed loop.
2.1 Resource cycles: Slowing, closing and narrowing loops
This section introduces the terminology of slowing, closing and narrowing resource loops. To
distinguish circular economy models from linear models, we categorize the design and
business model strategies according to the mechanisms by which resources flow through a
system, building on Stahel (1994). When discussing closed loop systems, Stahel (1994, p.
179) distinguishes two fundamentally different types of loops: (1) reuse of goods, and (2)
recycling of materials. “The reuse of goods means an extension of the utilisation period of
goods through the design of long-life goods; the introduction of service loops to extend an
existing product’s life, including reuse of the product itself, repair, reconditioning, and
technical upgrading, and a combination of these. The result of the reuse of goods is a
slowdown of the flow of materials from production to recycling. … Reusing goods and product-
life extension imply a different relationship with time.” (ibid.) The second loop is related to
recycling: “The recycling of materials means simply closing the loop between post-use waste
and production. Recycling does not influence the speed of the flow of materials or goods
through the economy.” (ibid.).
In alignment with Stahel, the following two fundamental strategies towards the cycling of
resources are introduced in this paper, as a high-level way to distinguish between the
different interpretations of “closing the loop” and approaches for a linear economy, illustrated
in Figure 1:
1) Slowing resource loops (i.e. reuse): Through the design of long-life goods and product-
life extension (i.e. service loops to extend a product’s life, for instance through maintenance,
repair) the utilisation period of products is extended, resulting in a slowdown of the flow of
resources.
2) Closing resource loops (i.e. recycle): Through recycling, the loop between post-use and
production is closed, resulting in a circular flow of resources.
These two approaches are distinct from a third approach towards reducing resource flows: 3)
Resource efficiency or narrowing resource flows, aimed at using fewer resources per
product. In the 1990s the influential book “Factor Four” was published, authored by von
Weizsäcker and Mr. and Mrs. Lovins. It introduced the idea of resource productivity (defined
as “reduction of environmental impacts per unit of economic output”; ibid.). Resource
productivity was introduced as a way to decouple the link between resource use and
environmental degradation. For product designers, resource productivity is often treated as
an indicator of resource efficiency (using fewer resources to achieve the same purpose).
Resource efficiency is not aimed at the cyclic use of products and materials, but an approach
to reduce resource use within the product and production process. This approach is different
from approaches for slowing resource loops, as it does not influence the speed of the flow of
products and does not involve any service loops (e.g. repair). Resource efficiency has been
applied successfully within a linear business model, and existing strategies for resource
efficiency can be used in conjunction with both product-life extension and recycling within a
circular system, an approach that can be characterized as ‘narrowing resource loops’. As
narrowing resource flows does not address the cycling of goods, this strategy is not
addressed further in this paper.
The detail of the product requirements and business model options building on Figure 1 are
based on the literature and relevant product/ process standards and are described in the
! 3
subsequent sections. In the subsequent sections, the product design and business model
strategies for a circular economy are described according to the above categorization.
Figure 1: Categorization of linear and circular approaches for reducing resource use.
Based on, and expanded from (Stahel, 1994; Braungart et al., 2008).
2.2 Circular product design strategies
Integrating circular economy concerns at an early stage in the product design process is
important, because once product specifications are being made, only minor changes are
usually possible – it is difficult to make changes, once resources, infrastructures and activities
have been committed to a certain product design (Bocken et al. 2014a). This section
describes the product design strategies relevant to slowing and closing loops, and provides
an overview of the terminology of relevant terms as described in the literature.
2.2.1 Design strategies for slowing resource loops
Slowing resource loops or extending the utilisation period of products helps to avoid the
manufacture of new products and its associated resource and energy use. Slowing resource
loops is about keeping the products we have in use for longer. As argued by John Donahoe,
CEO of eBay Inc.: “The greenest product is the one that already exists, because it doesn’t
draw on new natural resources to produce” (eBay Inc, 2014).
Table 1 includes the typical design strategies to slow resource loops: creating long-life
products (see Moss, 1985; Chapman, 2005) and extending the product’s life, once in use
(British Standard, 2009; Bakker et al., 2014). Long-life product design is supported by design
for reliability (Moss, 1985) and by design for both emotional and physical durability
(Chapman, 2005). Design or product life extension can be facilitated through maintenance,
repair, upgrading and remanufacturing (see British Standard, 2009; Linton and Jayaraman,
2005). Table 1 includes the terminology for these strategies.
! 4
Strategies & terms Definition
Designing long-life
products
Ensuring an extended / long utilisation period of products by designing
products for reliability and durability (physical and emotional)
Reliability The probability that a product manufactured to a given design will operate
throughout a specified period without experiencing a chargeable failure,
when maintained in accordance with the manufacturer’s instructions. (Moss,
1985; p. 17)
Durability
– Emotional
– Physical
Durability can relate to physical durability, e.g. the use of corrosion resistant
materials, and emotional durability, a situation where “users and products
flourish within long-lasting empathic partnerships” (Chapman, 2005).
Design for product-
life extension
Extension of the use period of goods through the introduction of service
loops to extend product life, including reuse of the product itself,
maintenance, repair, and technical upgrading, and a combination of these.
Maintenance The performance of inspection and/or servicing tasks (technical,
administrative, and managerial; EFNMS, 2014) to retain the functional
capabilities of a product (Linton and Jayaraman, 2005, p. 1814) or restore it
to a state in which it can perform its required function (EFNMS, 2014).
Repair
(recondition, reworking
or refurbishment are
forms of major repair)
Repair is about restoring a product to a sound/ good condition after decay
or damage (Linton and Jayaraman, 2005, p. 1813).
After repair, the product is expected to be in a usable state, but assurances
of performance are generally limited to the repaired part. (British Standard,
2009). Reconditioning is concerned with rebuilding or repairing major
components close to failure, even where there are no apparent faults (ibid.).
Upgrade The ability of a product to continue being useful under changing conditions
by improving the quality, value and effectiveness or performance (…)
(based on Linton and Jayaraman, 2005, p. 1814).
Remanufacture Returning a used product to at least its original performance with a warranty
that is equivalent or better than that of the newly manufactured product.
From a customer viewpoint, the remanufactured product can be considered
to be the same as the new product.(British Standard, 2009)
Table 1. Overview of design strategies to slow resource loops, including terminology
2.2.2 Design strategies for closing resource loops
The Cradle to Cradle design philosophy, propagated by McDonough and Braungart (2002),
has inspired many companies and designers to apply an ambitious circular approach to
product design (Bakker et al. 2010, de Pauw et al. 2013). With the introduction of design
strategies aimed at circular flows of materials, a more detailed understanding of the concept
of recycling has been propagated. According to Ayres (1994), there are only two possible
long-run fates for waste materials: either recycling and reuse, or dissipative loss (e.g.
lubricants or detergents). McDonough and Braungart (2002) developed this into a design
concept with distinct strategies for the two resource routes, in which dissipative losses are to
be made compatible with biological systems (fit for the biological cycle); and other materials
to be completely recycled (fitting a technological cycle). Products that mix materials of both
cycles and thereby inhibit the recovery of the materials are referred to as ‘monstrous hybrids’
(ibid.). In addition, to allow circular flows of resources, the authors distinguish between
primary recycling and downcycling (see Table 2), to demonstrate that downcycling does not
enable a cyclical flow of resources, but only delays the linear flow of resources from
production to waste. Likewise, processes such as quarternary recycling, or thermal recycling
(conversion of waste into energy) do not fit within a circular approach to product design.
Table 2 summarises the strategies to close resource loops, including the terminology used for
these strategies.
Strategies & terms Definition
Design for a technological cycle Design products of service with materials or products (‘technical
nutrients’) that can be continuously and safely recycled into new
materials or products (McDonough and Braungart 2002).
Primary recycling (NB. upcycling
is concerned with retaining or
improving the properties of the
material the latter concept being
relatively new and underexplored;
The conversion of waste into material having properties
equivalent to those of the original material (Aström, 1997).
Recycling in which resources retain their high quality in a closed-
loop industrial cycle (McDonough and Braungart, 2002),
! 5
see e.g. McDonough and
Braungart, 2013)
Tertiary recycling
(depolymerisation & re-
polymerisation)
The structural breakdown of materials into their original raw core
components (for instance depolymerisation) and consecutive
buildup (repolymerisation) of material with properties equivalent
to the original material (Kumar et al., 2011)
Design for a biological cycle Design products of consumption with safe and healthy materials
(‘biological nutrients’) that create food for natural systems across
their life cycle (McDonough and Braungart 2002).
Biodegradation and composting Biodegradability is the capability of being degraded by biological
activity (Vert et al., 2012); composting is a related process, in
which organic matter is biologically decomposed, performed by
microorganisms, mostly bacteria and fung (Vert et al., 2012).
Design for recycling strategies
that only fit a linear economy
Design products of which the materials can be applied again in
new products with loss of material quality, or can be burned while
recovering part of the energy content.
Downcycling / secondary recycling Material is reprocessed into a “low” value product, such as
industrial grade rubber being reprocessed into a general grade
rubber (Lee et al., 2001)
Table 2. Overview of design strategies to close resource loops, including terminology
2.3 Circular business model strategies
This section discusses the potential business model strategies for a circular economy. It
should be noted that the examples given in Table 3 do not all necessarily present full
business model innovations, but rather, elements of business model strategies that contribute
to a circular business.
Business models define the way a firm does business (Magretta, 2002) and they are viewed
as an important driver for innovation (e.g. Teece, 2010; Chesbrough, 2010; Yunus et al.,
2010). Business model choices define the architecture of the business and expansion paths,
but once established, companies often encounter great difficulty in changing business models
(Teece, 2010). As Chesbrough (2010) observes: companies commercialise product and
technology innovations through their business models and while they may allocate extensive
investments to this, they often have limited capability to innovate the business models
through which these innovations will pass. Following ‘dominant business model logic’ can
lead firms to miss valuable uses of an innovation (Chesbrough, 2010; Prahalad & Bettis,
1995). The same technology or product innovation pursued through different business models
will yield different economic outcomes (Chesbrough, 2010). Hence, according to Teece
(2010), every new product development effort should be coupled with the development of the
business model, which defines its ‘go to market’ and ‘capturing value’ strategies, because
technology or products by themselves do not guarantee business success.
The move to a circular economy model is an example of a radical change, which will require a
new way of thinking and doing business. The more radical the technical or product innovation,
the more challenging and the greater the likelihood that changes are required to the
traditional business model (Teece, 2010). Based on the business model frameworks of
Bocken et al. (2014a) and Bakker et al. (2014), key business model strategies are identified,
in Table 3, that fit the approaches of slowing and closing resource cycles.
Business
Model
Strategies
Definition Business model elements
Business model strategies to slow product loops
1 Access and
performance
model
Providing the capability
or services to satisfy
user needs without
needing to own
physical products
Value proposition: delivery of the service (access and
performance rather than ownership)
Value creation & delivery: The ‘hassle’ of service and
maintenance is taken over by the manufacturer or
retailer. The user can enjoy the benefits of performance
and access to a service (e.g. car sharing, launderette)
Value capture: pricing per unit of service (e.g. time,
number of uses, performance)
2 Extending Exploiting residual Value proposition: manufacturers exploit the residual
! 6
product value value of products – from
manufacture, to
consumers, and then
back to manufacturing –
or collection of products
between distinct
business entities
value of products and are able to deliver the customer
an affordable ‘as new’ product through
remanufacturing, repair and other product life extension
design strategies (see Table 1)
Value creation & delivery: take-back systems and
collaborations (e.g. with retailers, logistics companies
and collection points) to be established to enable
consistent product returns (e.g. a deposit system at
retail, as in the case of soda bottles)
Value capture: reduced material costs (while
potentially increasing labour and logistics cost) can
lower overall cost and make this an attractive option for
manufacturers
3 Encourage
sufficiency
Solutions that actively
seek to reduce end-
user consumption
through principles such
as durability,
upgradability, service,
warrantees and
reparability and a non-
consumerist approach
to marketing and sales
(e.g. no sales
commissions).
Value proposition: the manufacturer creates high
quality durable products and offers high levels of
service (reparable, reusable over time) and has a non-
consumerist approach to selling – fewer high-end sales
rather than ‘build-in obsolescence’
Value creation & delivery: non-consumerist approach
(e.g. no overselling, no sales commissions, conscious
buying) to sales. Only sell what is ‘needed’
Value capture: Often a premium model, where a high
price per product can justify lower volumes. Another
example includes ESCOs (energy service companies)
often subsidised by governments to incentivise users to
reduce energy use in the home
Business model strategies to close resource loops
4 Extending
resource value
Exploiting the residual
value of resources:
collection/ sourcing of
otherwise ‘wasted’
materials / resources/
energy to turn these
into new forms of value
Value proposition: Exploiting residual value of
resources, potentially making the product more
appealing to certain customers (e.g. those with a
‘green’ interest), while reducing material costs and the
overall product price.
Value creation & delivery: New collaborations and
take-back systems to be put in place to collect/ source
materials.
Value capture: Use otherwise ‘wasted’ resources to
turn these into new forms of value
5 Industrial
Symbiosis
A process- orientated
solution, concerned
with using residual
outputs from one
process as feedstock
for another process,
which benefits from
geographical proximity
of businesses
Value proposition: A process- orientated solution,
concerned with using residual outputs from one process
as feedstock for another process, across geographically
close businesses. The proposition for the business
network is a reduction in overall operating cost and
risks (e.g. environmental fines).
Value creation & delivery: collaborative agreements to
reduce costs across the network, by for example
sharing communal services (e.g. cleaning/
maintenance, recycling) and exchanging by-products.
Value capture: joint cost reduction and potential
creation of new business lines based on former waste
streams (see e.g. AB Sugar; Short et al., 2014)
Table 3. Business model innovations to slow and close resource loops. Developed from Bocken et al.
(2014b); Bakker et al. (2014).
2.3.1 Business model strategies for slowing resource loops
In line with the Section 2.2, business models to slow resource loops encourage long product
life and reuse of products through business model innovation. Three key models are
described: access and performance, extending product value, and sufficiency (Table 4).
! 7
Business Model Examples of cases
1 Access and
performance model
(or, PSS; Tukker,
2004; or Functionality
not Ownership; Bocken
et al., 2014)
– Car sharing
– Launderettes
– Document Management Systems (e.g. Xerox, Kyocera)
– Tuxido hire
– Leasing jeans
– Leasing phones
2 Extending product
value
– Automotive industry – remanufacturing parts
– Gazelle offering consumers cash for electronics and selling
refurbished electronics (gazelle.com)
– Clothing return initiatives (e.g. H&M, M&S’ Shwopping).
3 Encourage sufficiency – Premium, high service and quality brands such as Vitsœ (Evans et al.,
2009) and) and Patagonia (Chouinard & Stanley, 2012)
– Energy Service Companies (ESCOs)
Table 4. Models to slow resource loops. Adapted from Bakker et al. (2014) and Bocken et al. (2014b)
The ‘access and performance model’ (Bakker et al., 2014) is concerned with providing the
capability or services to satisfy users’ needs without needing to own physical products.
Similar terms include “Product Service Systems (PSS)” (e.g. Tukker, 2004), a combination of
products and services that seek to provide this capability or functionality for consumers while
reducing environmental impact is often used to refer to this type of business model
(Goedkoop, et al., 1999) and “deliver capability rather than ownership” (Bocken et al., 2014b).
Examples include launderettes, car clubs and clothing hire models (e.g. tuxedo hire). The
advantage of the Access & Performance strategy is that it can introduce economic incentives
for slowing resource loops, both with manufacturers (increasing profits from e.g. durability,
energy efficiency, reusability, reparability) and users (reducing costs when reducing use, e.g.
thinking before using a car) and potentially reduces the total need for physical goods. In this
way, this type of business model can contribute to slowing resource loops.
‘Extending product value’ is concerned with exploiting the residual value of products. The
ideal business model might be the case where the remanufacturing operation would simply
recover products which have ceased to function, with no new net consumption of materials,
other than those consumed during transport and processing (Wells & Seitz, 2005). In this
type of business model, remanufacturing typically becomes the activity of the original
manufacturer. Refrigerators and other white goods in the EU are examples of products whose
development is driven by Extended Producer Responsibility and the WEEE Directive.
‘Encourage sufficiency’ includes solutions that actively seek to reduce end-user consumption,
in particular through a non-consumerist approach to promotion and sales (e.g. not overselling,
no sales commissions) (Bocken et al., 2014b). The main principle of ‘encourage sufficiency’ is
to make products that last and allow users to hold on to them as long as possible through
high levels of service. Although they do not need to be, sufficiency based business models
are often premium business models – they are high end and the price premium justifies
‘slower sales’ and higher service levels. Examples of premium business models include that
of the furniture company Vitsœ (Evans et al., 2009) which developed a video ‘against
obsolescence’ (Fablemaze Weather, 2014) and Patagonia (Chouinard & Stanley, 2012) who
developed the iconic “Don’t buy this jacket” advertisement (Patagonia, 2011) to support the
launch of its Common Threads Initiative to encourage repair and reuse of its products.
Positive impacts of encouraging sufficiency include the reduction in the consumption of
resources, sustainable living and long-term customer loyalty, and new repair and service
markets. Businesses may benefit from premium margins on high quality products and high
levels of customer loyalty. The principles of longer use and repair and service are aligned with
the principles of a closed loop economy.
2.3.2 Business model strategies for closing loops
Closing loops in business model innovation is about capturing the value from what is
considered in a linear business approach, as by-products or ‘waste’. These strategies may be
‘micro’ in scope, for example when materials are reused in manufacturing processes within a
production facility (Wells & Seitz, 2005), or more ‘macro’ when products are eventually
disposed of and the content may be recycled via an entirely independent network. This
business model is already profitable for some materials such as aluminium where the energy
! 8
costs of creating the material are higher than re-melting (ibid.). Table 5 summarises the
business model strategies that economically enable closing of resource loops.
“Extending resource value” is about the collection/ sourcing of otherwise ‘ wasted’ materials
and resources to turn these into new forms of value. An example of this is InterFace Net-
Works TM – a programme that sources fishing nets from coastal areas to clean up oceans and
beaches while creating financial opportunities for people in impoverished communities and
serving as a source to create recycled into yarn for Interface carpet (InterFace, 2008).
Similar to this, industrial symbiosis is a process-orientated solution, concerned with turning
waste outputs from one process into feedstock for another process or product line (Ayres &
Simonis, 1994 & Chertow, 2000). An innovative business model example of internal
symbiosis practices is the case of AB Sugar, who managed to reinvent its business model
focused on sugar refining through internal practices, described by Short et al. (2014). This
paper discusses a range of business model innovations of industrial symbiosis, such as the
creation of a new business line producing animal feed from by-product bagasse (a common
by-product of sugar refining) and the use of latent heat and CO2 from sugar refining to heat
greenhouses and grow tomatoes near its sugar refining facilities (ibid.). These internal
practices where value is created from ‘waste’ are not uncommon, the Guitang Group in China
being another example of a sugar refiner developing new business lines based on ‘waste’
streams (Zhu et al., 2007).
Whereas industrial symbiosis practices often take place at the process and manufacturing
level and benefit from businesses located closely within a geographical area, ‘extending
resource value’ often happens at the product level and may happen across geographical
areas (see e.g. the Interface example).
Business
Model
Definitions Cases
1. Extending
resource
value
Collection/ sourcing of
otherwise ‘ wasted’
materials / resources/
energy to turn these into
new forms of value (e.g.
products and services)
– Interface – collecting and supplying fishing
nets as a raw material for carpets
– RecycleBank – providing customers with
reward points for recycling and other
environmentally benign activities
(recyclebank.com)
2. Industrial
Symbiosis
A process- orientated
solution, concerned with
turning waste outputs from
one process into feedstock
for another process
– Kalundborg Eco-Industrial Park
(http://www.symbiosis.dk/en)
– Symbiosis across business lines (e.g. Zhu
et al., 2007)
– AB sugar – internal ‘waste=value’
practices (Short et al., 2014)
Table 5. Business model strategies for closing resource loops. Developed from Bocken et al. (2014b)
3. Conceptual frameworks to support the move to a circular economy
Building on the product design and business model strategies to enhance a circular economy,
this section proposes a simple circular economy strategy framework to help facilitate the
move to a circular economy (Figure 2).
Figure 2 visualises a range of product design strategies and business model strategies
available to businesses wanting to move to a circular economy model based on the review in
Section 2. In this paper, it is argued that for such strategies to become successful, the
business needs to implement or already have in place, an overall goal or vision focused on
‘circularity’, so that innovators in the business are empowered and are motivated to act upon
this new way of thinking. To fully capture the business potential of the circular economy within
the overarching objective of the circular economy to reduce sustainability pressures (Lovins et
al., 2014, p. 4-5), the product and business model strategies are to be implemented within the
light of this overarching visionary statement or goal.
To provide an example of a business which such an overall vision: Vitsœ aims to make
durable timeless products which will last a lifetime or longer (Evans et al., 2009) and seeks to
! 9
challenge ‘planned obsolescence’ in design through the way it does business (FableMaze
Weather, 2014). It encourages reparability, upgradability, and emotional and technical
durability in design, which are important strategies to slow resource loops (Table 1). A second
example of such a visionary company is Patagonia, which has a mature view on
‘sustainability’ and wants to challenge unsustainability and over-consumption through the way
business is done (Chouinard & Stanley, 2012). Similar to Vitsœ, Patagonia has taken action
to create awareness about the unsustainability of overselling and over-consuming, through its
one-off “Don’t Buy This Jacket” advertisement (Patagonia, 2011), which can be viewed as a
business model strategy to slow resource loops (“encourage sufficiency”; Table 3). Patagonia
through the Common Threads Partnership with eBay (eBay inc., 2014) encourages people to
reuse clothes and buy second hand, and pledges to support product repair and make durable
products, which are strategies to ‘slow’ resource loops.
!
!
Figure 2. Circular economy product and business model strategy framework
4. Discussion and conclusions
This paper has sought to give insights in the product and business model strategies suited for
the move to a circular business. The taxonomy of slowing, closing and narrowing resource
loops was introduced building on Stahel (1994), as can be found in Figure 1. The aim of
slowing resource loops is to extend the utilisation period of products, whereas the purpose of
closing resource loops is to close the loop between post-use and production (i.e. recycling).
Second, a simple circular economy strategy framework (Figure 2) was developed to provide a
conceptual overview of the possible design and business model strategies for a circular
economy.
This work has focused on design and business model strategies. Future work will need to
include other essential elements such as the supply chain and enabling technologies and
infrastructure. Future work includes the development of case studies to test the proposed
strategies. Finally, methods for assessing the environmental, social and economic
sustainability of circular business models will need to be developed.
Acknowledgements
This project was supported by ResCoM, which is co-funded by the European Union under EU
Seventh Framework Programme (FP7), Grant agreement number: 603843. We would like to
thank the ResCoM team for their support and encouraging discussions on the topic of the
circular economy.
Visionary)statements)and)goals)
E.g.$realise$circular$designs$(e.g.$EcoSmart);$challenge$planned$
obsolescence$(e.g.$Vitsoe)$or$challenge$unsustainability$(e.g.$
Fairphone,$Patagonia)$
Circular)product)design)strategies)
)
Slowing)
• Designing$long?life$products$
• Designing$for$product?life$
extension$
$
Closing)$
• Design$for$a$technological$cycle$
• Design$for$a$biological$cycle$
$
$
Circular)business)model)strategies)
)
Slowing)
• Access$and$performance$model$
• Extending$product$value$
• Encourage$sufficiency$
)
Closing)
• Extending$resource$value$
• Industrial$Symbiosis$
)
$
! 10
References
Allenby, Braden R., Richards, D. (eds.) (1994). The Greening of Industrial Ecosystems.
National Academy Press, Washington D.C. (pp 23-37)
Aström, B.T. (1997) Manufacturing of Polymer Composites. Chapman & Hall, UK.
Ayres, Robert U., “Industrial Metabolism; theory and policy”. In: Allenby, Braden R. and
Deanna J. Richards (eds.) (1994). The Greening of Industrial Ecosystems. National Academy
Press, Washington D.C. (pp 23-37)
Ayres, R., Simonis, U., eds. (1994), Industrial Metabolism : Restructuring for Sustainable
Development, United Nations University Press, Tokyo & New York.
Bakker, C. A., Wever, R., Teoh, C., De Clercq, S. (2010). “Designing cradle-to-cradle
products: a reality check.” International Journal of Sustainable Engineering 3(1), 2 – 8.
Bakker, C., Den Hollander, M., van Hinte, E., Zijlstra, Y. (2014). Product that Last. Product
Desugn for Circular Business Models. TU Delft Library, Delft, The Netherlands.
Bocken, N., Farracho, M., Bosworth, R., Kemp, R. (2014a). The front-end of eco-innovation
for eco-innovative small and medium sized companies. Journal of Engineering and
Technology Management, 31, 43–57.
Bocken, N., Short, S., Rana, P., Evans, S. (2014b). A literature and practice review to
develop Sustainable Business Model Archetypes. Journal of Cleaner Production, 65, 42–56
Braungart, M., Bondesen, P., Kälin, A , Gabler, B. (2008). Public Goods for Economic
Development. Compendium of Background papers. Vienna, United Nations Industrial
Development Organisation.
British Standard BS 8887-2 (2009). Design for Manufacture, Assembly, Disassembly and
End-of- life processing (MADE). Part 2: terms and definitions. BSI, 2009.
Chapman, J. (2005). Emotionally Durable Design; objects, experiences and empathy.
Earthscan publishing, London.
Chertow, M.R., (2000). INDUSTRIAL SYMBIOSIS: Literature and Taxonomy. Annual Review
of Energy and the Environment, 25(1), 313–337.
Chouinard, Y., Stanley, V. (2012). The Responsible Company. Patagonia Books (1st ed.),
USA.
de Pauw, I., E. Karana and P. Kandachar (2013). Cradle to Cradle in Product Development: A
Case Study of Closed-Loop Design. Re-engineering Manufacturing for Sustainability. A. Y. C.
Nee, B. Song and S.-K. Ong. Singapore, Springer: 47-52.
eBay Inc. (2014). About the Patagonia Common Threads Partnership + eBay. Available at:
http://campaigns.ebay.com/patagonia/about/ (accessed December 2014).
EFNMS (the European Federation of National Maintenance Societies) 2014. About us.
Available at: http://www.efnms.org/What-EFNMS-stands-for/m13l2/What-EFNMS-stands-
for.html (accessed October 2014).
Ellen MacArthur Foundation (2014). Ellen MacArthur Foundation – Rethink the Future.
Available at: http://www.ellenmacarthurfoundation.org/ (accessed October 2014).
! 11
European Commission (2014). Moving towards a circular economy. Available at:
http://ec.europa.eu/environment/circular-economy/ (accessed October 2014).
Evans, S., Bergendahl, M., Gregory, M.,. Ryan, C. (2009). Towards a Sustainable Industrial
System. With Recommendations for Education, Research, Industry and Policy. Retrieved
from the WWW, December 2014:
http://www.ifm.eng.cam.ac.uk/uploads/Resources/Reports/industrial_sustainability_report
Fablemaze Weather. (2014). Vitsœ . Planned Obsolescence. [copyright VIMEO website]
Available at: http://vimeo.com/18996295
Goedkoop, M., van Halen, J., et al., (1999). Product service systems: ecological and
economic basics, The Hague, (NL).
Interface. (2008). Innovation. Available at:
http://www.interfaceglobal.com/Sustainability/Products/Innovation.aspx (accessed December
2014).
IPCC, (2014). Summary for Policymakers, In: Climate Change 2014, Mitigation of Climate
Change. Contribution of Working Group III to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona,
E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B.],
Geneva, Switzerland.
Kumar, S., Panda, A. K., Singh, R. K. (2011). A review on tertiary recycling of high-density
polyethylene to fuel. Resources, Conservation and Recycling, 55(11), 893–910.
Lee, S. G., Lye, S. W., Khoo, M. K. (2001). A Multi-Objective Methodology for Evaluating
Product End-of-Life Options and Disassembly. Int. J. Adv. Manuf. Tecnol., 18, 148–156.
Linton, J. D., Jayaraman, V. (2005). A framework for identifying differences and similarities in
the managerial competencies associated with different modes of product life extension.
International Journal of Production Research, 43(9), 1807–1829.
Lovins, A., Braungart, M., Stahel, W. A. (2014). A New Dynamic: Effective Business in a
Circular Economy (p. 172). Ellen MacArthur Foundation Publishing.
McDonough, W. Braungart, M. (2002). Cradle to Cradle: Remaking the Way We Make
Things
North Point Press, New York.
McDonough, W., & Braungart, M. (2013). The Upcycle: Beyond Sustainability – Designing for
Abundance (p. 227). North Point Press.
Moss, M. (1985). Designing for minimal maintenance expense. The practical application of
reliability and maintainability. Marcel Dekker, Inc, New York.
Patagonia. 2011. Don’t buy this jacket. Available at:
http://www.patagonia.com/email/11/112811.html (accessed September 2014)
Prahalad, C.K., Bettis, R. (1995). The dominant logic: retrospective and extension, Strategic
Management Journal 16(1), 5-14
Short, S., Bocken, N., Barlow, C., Chertow, M. (2014). From refining sugar to growing
tomatoes. Industrial ecology and business model evolution. Journal of Industrial Ecology.
DOI: 10.1111/jiec.12171
Stahel, W. R., “The utilization focused service economy: Resource Efficiency”. In: Allenby,
Braden R. and Deanna J. Richards (eds.) (1994). The Greening of Industrial Ecosystems.
National Academy Press, Washington D.C. (pp 178-190)
! 12
Su, B.W., Heshmati, A., Geng, Y, Yu, X.M. (2013). A review of the circular economy in China:
moving from rhetoric to implementation, Journal of Cleaner Production 42, 215–227
Teece, D., (2010). Business Models, Business Strategy and Innovation. Long Range
Planning 43 (2-3), 172-194.
Tukker, A., (2004). Eight types of product–service system: eight ways to sustainability?
Experiences from SusProNet. Business Strategy and the Environment, 13(4), 246–260.
Vert, M., Doi, Y., Hellwich, K., Hess, M., Hodge, P., Kubisa, P., Rinaudo, M., Schué, F.
(2012). Terminology for biorelated polymers and applications. Pure Applied Chemistry, 84 (2),
377–410, 2012.
World Business Council for Sustainable Development (WBCSD). (2014). Vision 2050: The
new agenda for business. Available at:
http://www.wbcsd.org/pages/edocument/edocumentdetails.aspx?id=219&nosearchcontextkey
=true [accessed December 2014]
Weizsäcker, Ernst von, Amory B. Lovins and L. Hunter Lovins (1998). Factor Four; Doubling
Wealth – Halving Resource Use. The new report to the Club of Rome. Earthscan Publications,
London.
Wells, P., Seitz, M. (2005). Business models and closed-loop supply chains: a typology.
Supply Chain Management – Int. J., 10 (3–4). 249–251
Yunus, M., Moingeon, B., Lehmann-Ortega, L., (2010), Building Social Business Models:
Lessons from the Grameen Experience, Long Range Planning, 43(2-3), 308–325.
Zhu, Q. et al., (2007). Industrial Symbiosis in China: A Case Study of the Guitang Group.
Journal of Industrial Ecology, 11(1),.31–42
lable at ScienceDirect
Journal of Cleaner Production 190 (2018) 712e721
Contents lists avai
Journal of Cleaner Production
journal homepage: www.elsevier.com/locate/jclepro
Business models and supply chains for the circular economy
Martin Geissdoerfer a, b, *, Sandra Naomi Morioka c, Marly Monteiro de Carvalho c,
Steve Evans a
a Institute for Manufacturing, Engineering Department, University of Cambridge, 17 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
b Garwood Center for Corporate Innovation, Haas School of Business, University of California, Berkeley, Berkeley, CA 94720-1930, USA
c Production Engineering of Polytechnic School, University of S~ao Paulo, Av. Prof. Almeida Prado, 128 Tr.2 Biênio 2o. andar, S~ao Paulo, SP, 05508-900, Brazil
a r t i c l e i n f o
Article history:
Received 19 June 2017
Received in revised form
27 February 2018
Accepted 16 April 2018
Available online 18 April 2018
Keywords:
Circular business models
Circular supply chain
Sustainable business models
Sustainable development
Circular Economy
Business model innovation
* Corresponding author. Institute for Manufacturin
University of Cambridge, 17 Charles Babbage Road,
Kingdom.
E-mail address: ml733@cam.ac.uk (M. Geissdoerfe
https://doi.org/10.1016/j.jclepro.2018.04.159
0959-6526/
© 2018 Published by Elsevier Ltd.
a b s t r a c t
The Circular Economy is increasingly seen as a possible solution to address sustainable development. An
economic system that minimises resource input into and waste, emission, and energy leakage out of the
system is hoped to mitigate negative impacts without jeopardising growth and prosperity. This paper
discusses the sustainability performance of the circular business models (CBM) and circular supply
chains necessary to implement the concept on an organisational level and proposes a framework to
integrate circular business models and circular supply chain management towards sustainable devel-
opment. It was developed based on literature analysis and four case studies. The proposed framework
shows how different circular business models are driving circular supply chain in different loops: closing
loops, slowing loops, intensifying loops, narrowing loops, and dematerialising loops. The identified cir-
cular business models vary in complexity of the circular supply chain and in the value proposition. Our
research indicates circular business and circular supply chain help in realising sustainability ambitions.
© 2018 Published by Elsevier Ltd.
1. Introduction
Sustainable development aims at satisfying current needs
without harming future generations’ ability to satisfy their needs
(WCED, 1987), while considering limitations in the Earth’s re-
sources in face of human development (Meadows et al., 1972;
Meadows et al., 2004), as well as synergies and trade-offs between
economic, environmental and social goals (Elkington, 1997). Based
on the preceding Millennium Goals, the United Nations proposed
17 sustainable development goals (SDG’s), to be achieved by, 2030,
including issues related to poverty, gender equality, sustainable
cities, amongst others (United Nations, 2015).
In order to address sustainable development, the concept of the
Circular Economy is gaining traction and is increasingly seen as a
complete or partial solution to these challenges (Geissdoerfer et al.,
2017a). With an economic system that minimises resource input
into and waste, emission, and energy leakage out of the system, it is
hoped that environmental impact can be reduced, without jeop-
ardising growth and prosperity (Bakker et al., 2014; European
g, Engineering Department,
Cambridge, CB3 0FS, United
r).
Commission, 2014; Evans, 2009; Webster, 2015). The origins of
the concept of Circular Economy is said to have been introduced by
David Pearce in 1990 by Andersen (2007) and Su et al. (2013). The
concept was addressing the relationships between the four eco-
nomic functions of the environment, consisting in amenity values,
its function as a resource base and a sink for economic activities,
and its role as a life-support system. However, Stahel (1982) might
have introduced the concept earlier, talking of a self-replenishing
system that minimises material and energy input as well as envi-
ronmental deterioration without negative influences on growth
and progress.
The circular economy is based on the idea of putting private
business into the service of the transition to a more sustainable
system. As the singular actor with the most resources and capa-
bilities, companies could considerably advance this transition by
creating additional value with an extended and more proactively
managed stakeholder network (Geissdoerfer et al., 2016; Porter and
Kramer, 2011; Nidumolu et al., 2009). Especially the concept of
Failed Value Exchanges is decisive in this context; it assumes that
by realising value that is either missed, destroyed, not internalised,
or not offered despite existing demand in the market, organizations
can potentially benefit society while at the same time gaining
competitive edge (Yang et al., 2016).
We and other authors (Chesbrough and Rosenbloom, 2002;
M. Geissdoerfer et al. / Journal of Cleaner Production 190 (2018) 712e721 713
Doleski, 2015; Knyphausen-Aufsess and Meinhardt, 2002;
Osterwalder and Pigneur, 2013) consider business model innova-
tion as a key tool to implement these changes into organizations
because of the concept’s usefulness in analysing, structuring,
planning, and communicating in face of the increasing complexity
of organisational configurations and activities (Doleski, 2015;
Knyphausen-Aufsess and Meinhardt, 2002).
The business model concept became popular in the 1990s with
the emergence of new revenue mechanism accompanying the
emergence of e-commerce (Magretta, 2002; Osterwalder and
Pigneur, 2005; Zott et al., 2011). In this context, it was initially
used to pitch simplified but comprehensive business ideas to in-
vestors within a short time frame (Knyphausen-Aufsess and
Meinhardt, 2002). Several authors have defined the concept
differently and there have been comprehensive reviews of these
definitions to come up with a unified understanding (such as
Schallmo, 2013; Zott et al., 2011). On the basis of these comparative
approaches, we define business model as simplified representa-
tions of the elements of a complex organisational system and the
interrelation between these elements. It determines the organisa-
tion’s value proposition, value creation and delivery, and value
capturing and aims at analysis, planning, and communication in
face of increasing complexity. The organisational environment and
value network is also considered to different degrees in most ap-
proaches (Geissdoerfer et al., under review.).
Combining the challenges of putting Circular Economy into re-
ality and the practice-oriented approach of business model inno-
vation leads to the concept of circular business models (CBM), a term
used to describe business models that are suited for the Circular
Economy by incorporating elements that slow, narrow, and close
resource loops, so that the resource input into the organisation and
its value network is decreased and waste and emission leakage out
of the system is minimised (Bocken et al., 2016). As we lay out in the
following section, we would add an emphasis on the linkage be-
tween CBM and circular supply chain management (CSCM) towards
closed loops in different approaches as closing loops, slowing loops,
intensifying loops, narrowing loops, and dematerialising loops.
intensifying and dematerialising loops.
The arguably biggest difference between conventional busi-
ness models and those designed for the Circular Economy lies in
their value creation and delivery element, and here particularly in
the supply chain. We use the term circular supply chain manage-
ment (CSCM), which comprises the configuration and coordina-
tion of the supply chain to close, narrow, slow, intensify and
dematerialise resource loops. Despite the importance of CSCM for
CBMs and therefore for the implementation of the Circular
Economy, it remains a rather unexplored area of research
(Homrich et al., 2017). Moreover, it is important to contextualize
CSCM with other related but not the same concepts like sustain-
able supply chain management (SSCM) (Wu and Pagell, 2011) or
green supply chain management (GSCM) (Zhu and Sarkis, 2004),
in which the closed loops are not a core issue. in order to
contribute to the nascent knowledge about CSCM and add insights
from industry on CBM, the present research aims to propose a
framework to integrate circular business models and circular
supply chain management towards sustainable development. To
address this goal, four case studies are presented, Alpha, an office
furniture remanufacturer, Beta, a high recycled content flat
aluminium sheet manufacturer, Gama designs and produces
luxurious fashion accessories from fire hoses, and Delta provides a
bike sharing service. This paper is structured in the following way.
First, the research’s background is illustrated (Section 2), before
we explain the applied research method (Section 3). This is fol-
lowed by a presentation (Section 4) and a subsequent discussion
of the findings (Section 5). The paper ends with a conclusions and
outlook section (Section 6).
2. Literature background
This section introduces the two key concepts underlying this
research, circular business models (CBM) and circular supply chains
(CSC), and illustrates their role in sustainable development.
2.1. Circular business models
The modern understanding of the Circular Economy is based on
different schools of thought, like Cradle to Cradle (McDonough and
Braungart, 2002), Laws of Ecology (Commoner, 1971), Looped and
Performance Economy (Stahel, 2010), Regenerative Design (Lyle,
1994), Industrial Ecology (Graedel and Allenby, 1995), Biomimicry
(Benyus, 2002), or the Blue Economy (Pauli, 2010). The circular
economic system avoids waste and tries to preserve the inherent
value of products as long as feasible (European Commission, 2014).
The goal of this is to minimise the consumption of resources by
recycling materials and/or energy after the use phase to avoid
leakage out of the system (Ellen MacArthur Foundation, 2013). The
butterfly diagram focus on the biological and technical closed loops
as a continuous flow of materials through the value circle, without
focusing on one particular circular loop but in the understanding of
how these loops work (Ellen MacArthur Foundation, 2013).
To utilise the sustainable business model’s analytical, strategic,
and communicational potential to integrate sustainability consid-
erations on the organisational level, three mayor elements have to
be added: sustainable value creation, more pro-active management
of a more comprehensive set of stakeholders, and a long-term
perspective (Geissdoerfer et al., 2017b; Geissdoerfer et al., 2016).
We synthesise this from an increasing range of definitions of the
SBM concept in the literature. These key definitional elements can
be found, among others, in the definitions of Boons and Lüdeke-
Freund (2013), who addresses not only the creation of superior
customer value but also private and public societal benefits;
Schaltegger et al. (2012), who highlights customer and social value,
economic advantages, and the mitigation of social and environ-
mental concerns, Stubbs and Cocklin (2008), who emphasises the
cooperation with a broad range of stakeholders. and Evans et al.
(2014), who focus on both the creation of social, environmental,
and economic value for and the alignment of interests of a broader
set of stakeholders that is going beyond the monetary value for
customers and shareholders that ‘unsustainable’ business models
would aim at.
Following Bocken et al. (2013), we consider business models for
the circular economy as a class of or generic strategy for sustainable
business models. By closing, narrowing, slowing, intensifying, and
dematerialising loops, the resource inputs into and the waste and
emission leakage out of the organisational system are minimised,
and, consequently, the sustainability performance improved.
Closing, narrowing, and slowing loops (Bocken et al., 2016 refer to
the biological and technical nutrition cycles of the Circular Econ-
omy (Ellen MacArthur Foundation, 2013), and comprises recycling
measures (closing), efficiency improvements (narrowing), and use
phase extensions (slowing or extending). Although considered in
the original concept as part of slowing loops, we want to emphasise
the importance of a more intense use phase (intensifying), and add
the substitution of product utility by service and software solutions
(dematerialising) to our conceptualisation.
Consequently, as illustrated in Fig. 1, CBMs can be defined as
SBMs – which are business models that aim at solutions for sus-
tainable development by creating additional monetary and non-
monetary value by the pro-active management of a multiple
stakeholders and incorporate a long-term perspective – that are
Fig. 1. Comparison of traditional, sustainable, and circular business models.
M. Geissdoerfer et al. / Journal of Cleaner Production 190 (2018) 712e721714
specifically aiming at solutions for the Circular Economy through a
circular value chain and stakeholder incentive alignment.
Figure further explores this correlation by contrasting circular
(C) and linear (L) configurations of the value proposition, value
creation and delivery, and value capture element of a business
model with its economic, environmental, and social performance,
providing an example of each item, as well as a possible manifes-
tation in an office furniture manufacturing operation. In this paper,
it is argued that all three elements of a business model (value
proposition, value creation and delivery, and value capture
(Richardson, 2008)) have to ‘go circular’ to achieve optimal sus-
tainability performance within the Circular Economy.
To further argue about the integration between CBM and sus-
tainability, Table 1 indicates how each business model element
(value proposition, creation and delivery system and value cap-
ture) is affected by economic, environmental, social dimensions
and a long-term orientation, which are four core issues of
corporate sustainability (Lozano, 2008). Regarding value propo-
sition, the core goal and vision of the organisation translated into
offerings (products and services) need to ensure revenue to
compensate direct and indirect costs, to be designed according to
approaches such as eco-design and design for disassembly, to
ensure society wellbeing, and finally to guarantee long-term ca-
pacity to address economic, environmental and social concerns. In
terms of value creation and delivery system for CBM, it is critical to
develop a value network with stakeholders that are motivated by
and contribute to economic viability, environmental benefits,
social concerns and preparation for long-term challenges of
businesses associated. Finally, value captured by the system
associated with CBM includes not only economic one, but also
natural resource preservation and society wellbeing both in the
short and in the long-term.
Table 1
Deployment of sustainability dimensions into circular business models.
Sustainability
dimensions
Circular business models
Value proposition Value creation and delivery
Economic Offerings (products and services) with
economic margin to ensure profit
Incentives for actors in the
product use and return dis
Environmental Products and services designed to
minimise natural resources depletion
Eco-efficient production an
Social Maximize product and service value for
society well-being
Pro-active approach toward
closed loops
Protection of
future
generations
Long-term capacity to address economic,
environmental and social concerns
Incremental and radical cha
ensure long-term partnersh
2.2. Circular supply chain management
The term supply chain management (SCM) was first coined by
Oliver and Webber in 1982 (Christopher, 2016; Stadtler et al., 2015),
and interest in the topic has rapidly increased ever since (Cooper
and Ellram, 1993). Today, the topic is researched by a broad range
of disciplines, from operations management to psychology (Burgess
et al., 2006), resulting in a body of literature in excess of 40,000
journal articles and books (Asgari et al., 2016). As a consequence,
there is hardly any periodical on marketing, manufacturing, dis-
tribution, customer management, or transportation that does not
contain one or more articles in the field (Ross, 1998).
This immense interest in SCM, combined with narrow silos of
knowledge of the different disciplines and organisational func-
tional units, and the broad diversity of employed research meth-
odology (Burgess et al., 2006) lead to a broad range of definitions
and understandings of the topic (see e.g. New, 1997; Lummus et al.,
2001; Mentzer et al., 2001; Kauffman, 2002). Based on these defi-
nitions and the review articles illustrated in Table 2, we define SCM
as the configuration and coordination of the organisational func-
tions marketing, sales, R&D, production, logistics, IT, finance, and
customer service within and across business units and organiza-
tions to improve operative effectiveness and efficiency of the sys-
tem and generate competitive advantages. SCM depends on
organizations’ network, since one single enterprise does not own
the entire set of skills and resources required to deliver its value
proposition (Taylor et al., 2001). In turn, these networks’ configu-
rations are variable according to certain attributes (such as dynamic
behaviour, level of trust between nodes, distribution of risks or
benefits, geographical dispersion, etc.), to characteristics of each
organisation representing the network node (such as strategy, po-
sition in the value chain, degree of influence, etc.), and also to
product type (tangibility, customization, variability, etc.) (Taylor
et al., 2001). Another fundamental issue is the type of collabora-
tion between organizations, which vary depending on the level of
formalisation, commitment and duration of relationship: simple
market transition, non-contractual agreement, contractual agree-
ment, joint venture, and integrated company (Jagdev and Thoben,
2001). This discussion is particularly relevant in the corporate
sustainability context, since strong collaboration network tend to
be crucial in terms of improving sustainability performance
(MacCarthy and Jayarathne, 2011).
There are also narrower definitions in the literature, which
usually focus functionally on purchasing and define SCM as the
strategic selection of, collaboration with, and control of suppliers.
While these definitions have advantages for operationalisation in
practice and demarcation from other concepts in theory, we choose
a rather comprehensive definition to allow for broad applicability
of our discussion. Depending on the definition, SCM can be an
important part or almost identical with the concept of the value
system Value capture
supply chain to extend
posal to the value system
Profit (or at least not negative result) to each
stakeholder
d logistic operations Reduced environmental burden by extracting more
value from less natural resource consumption
s stakeholders in the Further environmental consciousness on the value of
products
nges in the system level to
ips
Preparation of current production systems to be make
“perfect” circular economy viable in the future
Table 2
Literature overview SCM, developed from Burgess et al. (2006); Asgari et al. (2016).
Most cited textbooks Review articles SCM Reviews Sustainable SCM
(Chopra and Meindl, 2015) (Croom et al., 2000) (Fleischmann et al., 1997)
(Christopher, 2016) (Rungtusanatham et al., 2003) (Browne et al., 2005)
(Simchi-Levi and Kaminsky, 2007) (Sachan and Datta, 2005) (Meade et al., 2007)
(Handfield and Nichols, 1998) (Kouvelis et al., 2009) (Srivastava, 2007)
(Bowersox et al., 2012) (Gupta et al., 2009) (Carter and Rogers, 2008)
(Monczka et al., 2015) (Burgess et al., 2006) (Seuring et al., 2008)
(Weele, 2014) (Storey et al., 2006) (Bekkering et al., 2009)
(Shapiro, 2007) (Giunipero et al., 2006) (Ilgin and Gupta, 2009)
(Tayur and Ganeshan, 1999) (Alfalla-Luque and Medina-L�opez, 2009) (Carter and Liane Easton, 2011)
(Daugherty, 2011) (Sarkis et al., 2011)
(Seuring and Gold, 2012) (Gimenez and Tachizawa, 2012)
(Chen and Paulraj, 2004) (Abbasi and Nilsson, 2012)
(Giannakis and Croom, 2004) (Ashby et al., 2012)
(Ho et al., 2002) (Morgan and Gagnon, 2013)
(Lummus et al., 2001) (Lin et al., 2014)
(Mentzer et al., 2001) (Stindt and Sahamie, 2014)
(New, 1997) (Majid Eskandarpour et al., 2015)
(Skjoett-Larsen, 1999) (Fahimnia et al., 2015)
(Larson and Halldorsson, 2002) (Ntabe et al., 2014)
M. Geissdoerfer et al. / Journal of Cleaner Production 190 (2018) 712e721 715
chain (Porter, 2004) and value creation and delivery (Richardson,
2008). Therefore, it is an essential part of the business model of
organizations (Knyphausen-Aufsess and Meinhardt, 2002;
Richardson, 2008) and plays a crucial role in transforming it for the
Circular Economy. Organisational networks are called to reassess
how and where value is added, consumed and recovered (Barber
et al., 2012).
The differences in supply chains of conventional and circular
business models stem from the necessary closing, slowing, and
narrowing of material and energy flows (Bocken et al., 2016. As we
have argued in Fig. 2, we assume that CBMs achieve the best sus-
tainability performance, if all elements of the business model are
aligned to support these three functions (value proposition, value
creation and delivery, and value capture (Richardson, 2008)). While
there are already some reviews on sustainable and ‘green’ supply
chains, like (Abbasi and Nilsson, 2012; Ashby et al., 2012; Carter and
Liane Easton, 2011; Fahimnia et al., 2015; Gimenez and Tachizawa,
2012; Majid Eskandarpour et al., 2015; Sarkis et al., 2011; Seuring
et al., 2008; Srivastava, 2007) and the special issue in Journal of
Cleaner Production (JCP, 16(15), 2008), the literature on supply
chains for the Circular Economy is rather nascent, mostly referring
Fig. 2. A value based view on the sustain
to closed loop supply chains with relatively few reviews to date, like
(Govindan et al., 2015; Daniel et al., 2009; Stindt and Sahamie,
2014) The existing literature on Circular Economyis incomplete,
referring mainly to its implementations in China (including
sometimes dubious academic approaches, like (Ying and Li-jun,
2012)), with one review in the context of Waste-to-Energy supply
chains (Pan et al., 2014).
Based on this literature, we define Circular Supply Chain Man-
agement (CSCM) as the configuration and coordination of the
organisational functions marketing, sales, R&D, production, logis-
tics, IT, finance, and customer service within and across business
units and organizations to close, slow, intensify, narrow, and
dematerialise material and energy loops to minimise resource
input into and waste and emission leakage out of the system,
improve its operative effectiveness and efficiency and generate
competitive advantages.
Following the importance of the value chain for the business
model and the need for alignment of all the business model’s ele-
ments for optimal sustainability performance, it can be argued that
CSCM aiming at fostering sustainable development should incor-
porate SBM characteristics. Thus, CSCM for sustainable
ability of circular business models.
M. Geissdoerfer et al. / Journal of Cleaner Production 190 (2018) 712e721716
development should comprise the creation of additional monetary
and non-monetary value, a pro-active multiple stakeholder man-
agement, and a long-term perspective, as illustrated in Table 3.
3. Research method
The literature analysis provided a theoretical background for the
conducted case studies. This research method was chosen given the
exploratory characteristic of the research. Besides, case studies are
also suitable for investigations on contemporary phenomenon (Yin,
2010) and provides in-depth understandings of unique set ups
(Simmons, 2009), as is the situation for the present research. We
followed the recommendations of Eisenhardt (1989) and Yin
(2009).
Once the literature review was conducted, providing the main
literature background, the next step was to choose the companies
to be part of the research. A specific selection criterion was defined,
as the research method based on case studies calls for defining a
theoretical sampling (Eisenhardt and Graebner, 2007), rather than
a statistically representative one. The main selection criteria was
that the organisation’s business model had to be aligned with
either closing, slowing, intensifying loops, narrowing loops and/or
dematerialising loops. Four companies were selected for exploring
business opportunities under the circular economy logic. Alpha’s
core idea is to provide remanufactured office furniture, using end of
life goods to produce well-functioning products within an internal
design solution. Meanwhile, Beta produces flat rolled aluminium
with very high recycled content (significantly higher than others in
the market). Gama designs and produces luxurious fashion acces-
sories (such as purses and belts) from fire hoses and Delta provides
a bike sharing service. The first three companies are from the
United Kingdom, while the forth one is a Brazilian company. Beta is
the only large company, while the others are medium and smaller
companies, with less than 50 employees (Delta) and around 10
employees (Alpha and Gama). Despite different sectors and busi-
ness models, each company chosen as case study represents a
starting point for characterising elements and functions contrib-
uting to the Circular Economy.
Data collection was conducted mainly based on semi-structured
interviews with key informants of the companies, following the
recommendations of Miles et al. (2014). Biases in the interviews
Table 3
Comparison of SCM, CSCM and CSCM for sustainable development (SD).
SCM CSCM CSCM for SD
Aim
Operative effectiveness and
efficiency
Operative effectiveness and
efficiency
Operative effective
Competitive advantages Competitive advantages Competitive advan
Minimising material and
energy input
Minimising materi
Minimising waste and
emission leakage
Minimising waste
Social effectivenes
professional and p
Environmental effe
Economic effective
(VRIO) competitive
Means
Configuration organisational
functions
Configuration organisational
functions
Configuration orga
Coordination of
or
ganisational functions
Coordination of
organisational functions
Coordination of or
Closing resource loops Closing resource lo
Slowing resource loops Slowing resource l
Narrowing resource loops Narrowing resourc
Creation of additio
Pro-active multiple
Long-term perspec
and reporting were considered during data analysis, as pointed out
by previous qualitative research on corporate sustainability (Bolis
et al., 2015). To mitigate this research limitation, interview data
was complemented by published documents and companies’
websites. Besides during interviews, concrete examples were asked
to illustrate generic statements. Key informants were chosen given
their involvement and general knowledge about each company’s
business model. Interviewees included the CEO and founder of
Alpha, Gama and Delta, and the corporate sustainability manager of
Beta. The interviews encompassed questions about the in-
terviewees’ description and perceptions according to the CBM of
their respective companies. In particular, they were asked about the
company’s (1) value proposition in terms of economic, environ-
mental and social value the firm aim at delivering; (2) creation and
delivery system with focus on the role of the business in closing the
loop of the product life cycle; and (3) value captured by the various
stakeholders of each case study. The collected data were analysed
qualitatively, according to aspects regarding sustainable develop-
ment and circular economy.
4. Research results analysis
As previously indicated by Table 3, CSCM for SD encompasses
traditional aims and means as SCM and as CSCM, with additional
issues related to (1) social, environmental and economic goals, (2)
pro-active multiple stakeholder management, (3) long-term
perspective, and (4) closing, narrowing and slowing resource loops.
4.1. Economic, environmental and social goals
We initiated the data analysis by discussing social, environ-
mental and economic goals of the case studies. To do so, a trian-
gulated analysis was performed, including the case studies’
declared mission and/or vision stated in their corporate websites,
combined with the interviews. In order to maintain the companies’
name confidential, the exact statements from the websites are not
shown. All four of the organizations are for-profit organizations, as
they aim at providing revenue to cover their costs and generate
profit by selling their products and services. Regarding environ-
mental goals, three of them explicitly seek to tackle environmental
goals in reducing landfill, as declared in the respective websites. In
ness and efficiency
tages
al and energy input
and emission leakage
s (e.g. Intra- and intergenerational equity, secure and meaningful employment,
ersonal development)
ctiveness (e.g. Land use, biodiversity, pollution, resource depletion)
ness (e.g. healthy ownership structures, financial independence, sustainable
advantage)
nisational functions
ganisational functions
ops
oops
e loops
nal monetary and non-monetary value
stakeholder management
tive
M. Geissdoerfer et al. / Journal of Cleaner Production 190 (2018) 712e721 717
particular, they foster the market for recycled (Beta and Gama) and
remanufactured (Alpha) goods. When asked about the environ-
mental impact of Delta, the company replied that they probably
have a positive impact on carbon emission, but have not yet focused
effort to calculate it. They believe that by enabling the possibility for
people to cycle instead of using their cars to move around the city
can has potential to compensate the emissions associated to their
operations.
The explicit connection of the studied companies to social goals
vary from one case to the other. Alpha’s statement is clear and
specific on their goals to create local jobs through remanufacturing.
Delta’s goal for society is also explicit, which is to integrate bicycles
as an alternative for urban transportation. Meanwhile, Beta de-
clares their commitment to customers, co-workers and local com-
munities, without pointing out what specifically they intend to
create to these stakeholders. Data from both interview and website
statement indicates Beta’s contribution to society in terms of
technology innovation and development related to production
process of sheets from recycled aluminium, as well as to the
application and usage of aluminium sheets with high recycled
content. In turn, Gama’s statement is also not explicit in this regard
and mentions a more intangible value, indicating how much society
loses with materials going to landfill or incineration, in terms of
quality, narrative and opportunity to do better.
4.2. Pro-active multiple stakeholder management
Another relevant aspect for CSCM and CBM is relates to a pro-
active multiple stakeholder management. A summary of the
stakeholders and the value created and delivered to each of them is
shown in Table 4. It brings evidence that the organizations are
having a proactive approach not only towards its shareholders, but
also to other internal and external stakeholders. Alpha and Gama,
for instance, explicitly mentioned their intention to contribute to
practice for circular economy, serving as an example and to push
partners and innovation to make their circular business viable.
Besides, Beta saw the opportunity to reduce dependency of imports
commodity-priced materials with high carbon emission and turned
into heavy investments in new technology to produce quality
aluminium sheets with high percentage of recycled material.
Table 4
Sustainable value captured by stakeholders.
Stakeholder
Alpha Beta
Shareholders/
Investors
Structurally lower cost disruptive high
growth and sustainable business
Supply risk reduction, longer te
Employees Opportunity to work for a company
with purpose
Motivation towards challengin
increasing rate of recycled con
product
Clients Quality and price combination for
products and services, wellness and
productivity (interior design)
Product quality (independent f
for production)
Partnership with clients for tec
development applied to low ca
aluminium components and ap
Suppliers Chance to sell surplus waste stock (used
as input for remanufacturing process)
Development of equipment sup
address the technical challenge
recycled content
Society Local semi-skilled jobs, reduction of
supply risk, demonstration of a working
circular business
Higher environmental awarene
Engagement of local organizati
recycled material
Low carbon footprint products
Environment Less burden on landfill Reduction of carbon emission t
whole process
Government Local semi-skilled jobs, reduction of
supply risk, demonstration of a working
circular business
Retaining local production valu
buying from abroad)
Moreover, they also engaged in partnership with clients to develop
technology applied to low carbon aluminium components and
applications, e.g., towards actively enabling the market for low
carbon products to grow.
Delta, on the other hand, saw from international market the
opportunity to invest bike sharing, as one of the pioneers of this
idea in its country (Brazil). It is worth noting that, what the cases
have in common is the need to develop their consumer market,
actively promoting awareness on the environmental and/or social
value they aim to create and deliver. Development of a supply chain
network that is able to collect used office furniture that would be in
the end of life and to combine skills and infrastructure to reman-
ufacture goods is also a challenge for Alpha. The company is
engaged in developing these partners to enable their business to
grow.
4.3. Long-term perspective within short term actions
Alpha is an office furniture remanufacturer, Beta is a high
recycled content flat aluminium sheet manufacturer, Gama designs
and produces luxurious fashion accessories from fire hoses, and
Delta provides a bike sharing service. Regarding the long-term
perspective, companies are pushed to account for future genera-
tions based on their decision of the present. The positive contri-
bution of each case study in the long run was also discussed during
interviews. For Alpha and Gama, as mentioned before, it is about
building an economically viable business today to help disseminate
the circular economy principles. Regarding Alpha, this is particu-
larly in the office furniture business, for which it is fundamental
that other organizations in logistics (direct and reverse) and pro-
duction (remanufacturing) are able to provide infrastructure to
other circular business.
Gama, on the other hand, is interested in materials with high
potential of usage, without the objective of closing specific material
cycles. Although they started and are very strong with luxury ac-
cessories from fire-hoses, they also work with other materials, such
as leather waste and parachute silk. Their intention is to awake on
people the perception on the value of certain materials and on the
possibility of having goods that last virtually never end in the
landfill and can be used for many generations ahead. Beta’s legacy
Gama Delta
rm return
Satisfaction of business with
purpose
Satisfaction and motivation
g targets for
tent in the
Satisfaction of business with
purpose
Decent salary
Satisfaction of business with
purpose
rom the inputs
hnology
rbon
plications
Purpose driven products
Long-term products (financial
return)
Private sponsor for bike sharing
service: brand value, relation to
local government
pliers to
s of high
Close relationship with
suppliers of materials (such as
fire-fighters community)
Income
Connection to the business
purpose
ss
ons to collect
(packaging)
Transition to a circular
economy
Environmental and health
awareness
Bike culture
hroughout the Less burden on landfill Low carbon additional solution
for urban transportation
e (instead of Taxes Image before society
M. Geissdoerfer et al. / Journal of Cleaner Production 190 (2018) 712e721718
to the long-term is aligned with its business decision on investing
in technologies for low carbon aluminium goods and production
process.
In turn, Delta aims to disseminate the culture of bike sharing as a
day-to-day solution and not only for leisure to adults and children
as users, and also to private and public organizations as business
opportunity.
4.4. Circular resource loops and guidelines for sustainable business
models
Regarding the companies’ respective resource loops, interesting
insights were also collected in the field. The circular business
models presented by the case studies are aligned with the Butterfly
diagram (Ellen-MacArthur-Foundation, 2013). Focusing on the
right side of the diagram (the technical cycles), Alpha clearly con-
tributes to the refurbish/remanufacture cycle, while Beta and Gama
are examples of recycling business models. Yet, Delta is more
aligned with the maintenance cycle, intensifying the use of their
bicycles by internally designing and manufacturing a robust
product that is easy repair. The CBM’s value proposition together
with requirements of a CSCM are summarized in Table 5.
5. Discussions and framework proposal
Combining the analysis of the literature and data from case
studies, a framework is proposed, combining the discussions on
sustainable development, circular economy, circular supply chain
management and circular business models in practice (Fig. 3). In
doing so, we try to bring initial discussion on how these constructs
are interconnected. On the left side, the framework reinforces the
dependency between a single organisation, a specific CBM, and its
value network, as a circular supply chain. In this sense, the research
corroborates with previous arguments on the contribution of CSCM
to closing, narrowing and slowing the loop (Bocken et al., 2017),
complementing this view with intensifying and dematerialising
efforts, as discussed in Section 4.4 and illustrated in Table 5.
Empirical evidence from performance case studies reinforces the
Table 5
Towards circular business model and circular supply chain in the case studies.
BM
type
Elements Case study
Alpha Beta
CBM Closing loops Development of partners to provide
reverse logistics of used furniture
and remanufacturing
High investment on R&D f
development
Slowing loops
Intensifying
loops
Narrowing
loops
Partnership with clients in
low carbon solutions
Dematerialising
loops
SBM Creation of
sustainable
value:
Interior design solution, combining
remanufactured and new office
furniture
Flat rolled aluminium with
recycled content
Pro-active
multiple
stakeholder
Pushing the supply chain to develop
towards circular economy
Pushing technology bound
low carbon aluminium goo
production process
Promoting the culture of
remanufactured goods
Long-term
perspective
Urgency to action to change
towards circular economy
Need to develop alternativ
to reduce dependency on i
and commodity prices
crucial role of network infrastructure and capabilities to enable
CBM operations. For instance, Delta realized the key role of using a
bicycle that was durable and relatively easy to perform mainte-
nance and decided to switch is operations from buying to assem-
bling their own bicycles.
Furthermore, the proposed framework also indicates that the
previous arguments depend on the following conditions (aims and
means) for circularity and for sustainability: economic, environ-
mental and social goals, proactive stakeholder management, long-
term perspective. Each business condition was previously dis-
cussed in the literature (Geissdoerfer et al., under review,b) and the
performed research initially addresses this issue, as the case studies
presented in Sections 4.1, 4.2 and 4.3 bring empirical evidence on
the relevance of these conditions. These aspects reinforces that the
triple bottom line approach focused on a sustainability based on
three pillars: economic, environmental and social ones (Elkington,
1997b) is relevant, but not sufficient for CBM’s and SBM’s. A broad
and proactive approach on stakeholders and long-term perspective
to complement short termed ones are also crucial factors for suc-
cessful sustainable businesses.
Previous knowledge has already pointed out initial discussions
on the relation between sustainable development and circular
economy (Geissdoerfer et al., 2017a). In this sense, our paper adds
to this by bringing empirical evidence on the relationship between
these perspectives, as the present research explores this link by
arguing the three conditions for CBM to address challenges for
Circular Economy and, at the same time, for Sustainable Develop-
ment. The connection between these perspectives is still open for
discussion. On the one hand, one can argue that Circular Economy
is one possible way, amongst others, to reach Sustainable Devel-
opment. On the other hand, Sustainable Development is a concept
that is so broad and intangible that may lose meaning, while Cir-
cular Economy could became a more tangible way to organize so-
ciety and economy. In summary, our research seeks to contribute at
some extend to this discussion, by illustrating an overlapping area
between the concepts, but understands the need for further and
deeper arguments. This overlapping area represents arguments
from the case studies that, while the tackle the three conditions for
Gama Delta
or product Low waste in the
production stage
Product design based on
long usage stage
Internal product development and bike
assembly to ensure long usage stage and
facilitated maintenance
Bike sharing intensifies use phase
terested in
Rent service instead of product
ownership
very high Luxurious fashion
accessories (such as purses
and belts) from fire hoses
Service for individual urban
transportation (bike sharing)
aries for
ds and
Pushing the supply chain to
develop towards circular
economy
Dissemination of the culture of bike
sharing as transportation for short
distances
Promotion of sustainable
consumption
e materials
mports
Urgency to action to change
towards circular economy
Need for more efficient ways for urban
transportation
Fig. 3. Proposed framework.
M. Geissdoerfer et al. / Journal of Cleaner Production 190 (2018) 712e721 719
sustainability using a business model based on closing, slowing,
narrowing, intensifying and/or dematerialising.
6. Conclusions and outlook
The present research contributes to the literature by proposing
an integrated framework on CBM and CSCM built on theory and
practice, discussing their interrelation and the contribution to the
dimensions of sustainability. To address this, four case studies were
presented: Alpha, an office furniture remanufacturer, Beta, a high
recycled content aluminium sheet producer, Gamma, a recycled
luxury accessories manufacturer, and Delta, a bike-sharing
company.
All four case studies present circularity aspects incorporated
into their business models and supply chains. The findings confirm
previous research on SBMs derived from creating value from waste
(Bocken et al., 2014) and evidence for CBM and CSCM elements was
found. This includes products designed and manufactured from
disposed materials, partnership building for reverse logistics and
efforts to provoke system change by communicating and collabo-
rating for the Circular Economy. This reinforces previous theoretical
researches that indicated the need not only for technical in-
novations (e.g., in terms of material flows), but also for social in-
novations (e.g. in terms of changes in consumer behaviour), such as
discussed in Winans et al. (2017).
However, the cases studied still face challenges in changing the
paradigm from linear to circular, especially regarding adaptations
needed in the companies’ supply chains and in purchasing pro-
cesses of customers. Empirical data show alignment between CBM
and consequently CSCM to sustainable development challenges. As
proposed by the framework showed in Fig. 3, CBM, aligned with
circular supply chain, can contribute to sustainable development by
promoting economic, environmental and social goals; pro-actively
managing stakeholders; including a long-term perspective; and
closing, slowing, intensifying, narrowing and dematerialising
resource loops. The resource loops for circularity were previously
pointed out by the literature (Bocken et al., 2016). Our framework
complements this view by adding explicitly initiatives on intensi-
fying and dematerialising loops for circular economy.
This paper brings implications to practice by presenting
different CBM and discussing the main challenges faced in practice.
The case studied present similarities and contrasts. For example,
while Alpha is a small company, with local action, born with a
circularity mind-set and the explicit purpose to contribute to sus-
tainable development, Beta is a large globally present organisation
and enlarges the amount of recycled material into its product
mainly to compensate for uncertainty in resource purchasing.
Despite these differences, all the case companies’ business models
depend on changing consumers and suppliers’ behaviour, since
CBM and CSCM demand a systemic paradigm shift. For instance, the
companies’ customers’ product quality perception from remanu-
factured or recycled material tended to be lower than for traditional
goods, resulting in lower realisable prices. This is despite the
products’ high quality requirements and comparatively little ad-
vantages in their cost structure.
The main limitations in our research encompass, first and
foremost, the limited number of case studies and data collection
based mostly on only one interview for each case study. However,
the interviews were triangulated with publicly available docu-
ments to mitigate this. Interviews with other stakeholders from the
supply chain to complement data collection can be an interesting
future follow-up study to complement the present one. All in all,
this research is to be seen as among the first steps in evaluating
whether ‘going circular’ really makes businesses and their supply
chains more sustainable. A more systematic assessment of their
contribution to sustainable development goals will be desirable to
confirm and complements these first steps.
Acknowledgements
This work was supported by the Brazilian institutes: National
Counsel of Technological and Scientific Development (CNPq) and
Coordination for the Improvement of Higher Education Personnel
(CAPES).
References
Abbasi, Maisam, Nilsson, Fredrik, 2012. Themes and challenges in making supply
chains environmentally sustainable. Edited by Richard Wilding Supply Chain
Manag. Int. J. 17 (5), 517e530. https://doi.org/10.1108/13598541211258582.
Andersen, M.S., 2007. An introductory note on the environmental economics of the
circular economy. Sustain. Sci. 2, 133e140. https://doi.org/10.1007/s11625-006-
0013-6.
Alfalla-Luque, Rafaela, Medina-L�opez, Carmen, 2009. Supply chain management:
unheard of in the 1970s, core to today’s company. Bus. Hist. 51 (2), 202e221.
https://doi.org/10.1080/00076790902726558.
Asgari, Nasrin, Nikbakhsh, Ehsan, Hill, Alex, Farahani, Reza Zanjirani, 2016. Supply
chain management 1982e2015: a review. IMA J. Manag. Math. 27 (3), 353e379.
https://doi.org/10.1093/imaman/dpw004.
Ashby, Alison, Leat, Mike, Hudson-Smith, Melanie, 2012. Making connections: a
review of supply chain management and sustainability literature. Edited by
Richard Wilding Supply Chain Manag.: Int. J. 17 (5), 497e516. https://doi.org/
10.1108/13598541211258573.
Bakker, C.A., den Hollander, M.C., van Hinte, E., Zljlstra, Yvo, 2014. Products that Last
– Product Design for Circular Business Models. TU Delft Library, Delft.
Barber, Kevin D., Beach, Roger, Zolkiewski, Judy, 2012. Environmental sustainability:
a value cycle research agenda. Prod. Plann. Contr. 23 (2e3), 105e119. https://
doi.org/10.1080/09537287.2011.591621.
Bekkering, J., A Broekhuis, A., Van Gemert, W.J.T., 2009. Optimisation of a green gas
supply chain e a review. Bioresour. Technol. 101, 450e456. https://doi.org/
M. Geissdoerfer et al. / Journal of Cleaner Production 190 (2018) 712e721720
10.1016/j.biortech.2009.08.106.
Benyus, Janine M., 2002. Biomimicry. Harper Perennial, New York.
Bocken, Nancy M.P., de Pauw, Ingrid, Bakker, Conny, van der Grinten, Bram, 2016.
Product design and business model strategies for a circular economy. J. Ind.
Prod. Eng. 33 (5), 308e320. https://doi.org/10.1080/21681015.2016.1172124.
Taylor & Francis.
Bocken, N.M.P., Short, S., Rana, P., Evans, S., 2013. A value mapping tool for sus-
tainable business modelling. Corp. Gov. Int. J. Bus. Soc. 13, 482e497. https://
doi.org/10.1108/CG-06-2013-0078.
Bocken, N.M.P., Short, S.W., Rana, P., Evans, S., 2014. A literature and practice review
to develop sustainable business model archetypes. J. Clean. Prod 65, 42e56.
https://doi.org/10.1016/j.jclepro.2013.11.039.
Bolis, I., Brunoro, C.M., Sznelwar, L.I., 2015. Work for sustainability: Case studies of
Brazilian companies. Appl. Ergon. 57, 72e79. https://doi.org/10.1016/
j.apergo.2015.10.003.
Boons, F., Lüdeke-Freund, F., 2013. Business models for sustainable innovation:
state-of-the-art and steps towards a research agenda. J. Clean. Prod. 45, 9e19.
https://doi.org/10.1016/j.jclepro.2012.07.007. M4-Citavi.
Bowersox, Donald, Closs, David, Bixby Cooper, M., 2012. Supply Chain Logistics
Management, fourth ed. McGraw-Hill, London.
Browne, Michael, Rizet, Christophe, Anderson, Stephen, Allen, Julian, Keïta, Basile,
2005. Life cycle assessment in the supply chain: a review and case study.
Transport Rev. 25 (6), 761e782. https://doi.org/10.1080/01441640500360993.
Routledge.
Burgess, Kevin, Singh, Prakash J., Koroglu, Rana, 2006. Supply chain management: a
structured literature review and implications for future research. Edited by Paul
D. Cousins. Co-Editors: Benn Lawson Int. J. Oper. Prod. Manag. 26 (7), 703e729.
https://doi.org/10.1108/01443570610672202.
Carter, Craig R., Liane Easton, P., 2011. Sustainable supply chain management:
evolution and future directions. Edited by Michael Crum Int. J. Phys. Distrib.
Logist. Manag. 41 (1), 46e62. https://doi.org/10.1108/09600031111101420.
Carter, Craig R., Rogers, Dale S., 2008. A framework of sustainable supply chain
management: moving toward new theory. Int. J. Phys. Distrib. Logist. Manag. 38
(5), 360e387. https://doi.org/10.1108/09600030810882816.
Chen, Injazz J., Paulraj, Antony, 2004. Towards a theory of supply chain manage-
ment: the constructs and measurements. J. Oper. Manag. 22, 119e150. https://
doi.org/10.1016/j.jom.2003.12.007.
Chesbrough, H., Rosenbloom, R.S., 2002. The role of the business model in capturing
value from innovation: evidence from xerox corporation’s technology spin-off
companies. Ind. Corp. Chang. 11, 529e555.
Chopra, Sunil, Meindl, Peter, 2015. Supply Chain Management: Strategy, Planning,
and Operation, sixth ed. Pearson, London.
Christopher, M., 2016. Logistics and Supply Chain Management, fifth ed. Financial
Times/Pearson Education, London.
Commoner, Barry, 1971. The Closing Circle: Nature, Man, and Technology. Knopf,
New York.
Cooper, Martha C., Ellram, Lisa M., 1993. Characteristics of supply chain manage-
ment and the implications for purchasing and logistics strategy. Int. J. Logist.
Manag. 4 (2), 13e24. https://doi.org/10.1108/09574099310804957.
Croom, Simon, Romano, Pietro, Giannakis, Mihalis, 2000. Supply chain manage-
ment: an analytical framework for critical literature review. Eur. J. Purch. Supply
Manag. 6 (1), 67e83. https://doi.org/10.1016/S0969-7012(99)00030-1.
Daniel, V., Guide Jr., R., Van Wassenhove, Luk N., 2009. Or forumdthe evolution of
closed-loop supply chain research. Oper. Res. 57 (1), 10e18. https://doi.org/
10.1287/opre.1080.0628.
Daugherty, Patricia J., 2011. Review of logistics and supply chain relationship liter-
ature and suggested research agenda. Edited by Michael Crum Int. J. Phys.
Distrib. Logist. Manag. 41 (1), 16e31. https://doi.org/10.1108/
09600031111101402.
Doleski, O.D., 2015. Integrated Business Model: Applying the St. Gallen Manage-
ment Concept to Business Models.
Eisenhardt, Kathleen M., 1989. Building theories from case study research. Acad.
Manag. Rev. 14 (4), 532. https://doi.org/10.2307/258557.
Eisenhardt, K.K.M., Graebner, M.E., 2007. Theory building from cases: opportunities
and challenges. Acad. Manag. J. 50, 25e32.
Elkington, J., 1997b. Cannibals with Forks: The triple bottom line of 21st century.
Capstone, Oxford.
Elkington, J., 1997a. Cannibals with Forks: the Triple Bottom Line of 21st Century
Business. John Wiley and Sons, London.
Ellen-MacArthur-Foundation, 2013. Towards the circular economy: economyc and
business rationale for accelerated transition, Vol. 1. https://doi.org/10.1162/
108819806775545321.
Eskandarpour, Majid, Dejax, $ Pierre, Miemczyk, Joe, Peacuteton, Olivier, 2015.
Sustainable supply chain network design: an optimization-oriented review.
Omega 54, 11e32. https://doi.org/10.1016/j.omega.2015.01.006.
European Commission, 2014. Towards a Circular Economy: a Zero Waste pro-
gramme for Europe. Communication from the Commission to the European
Parliament, the Council, the European economic and social Committee and the
Committee of the Regions. https://scholar.google.co.uk/scholar?
hl¼en&q¼EuropeanþCommission%2Cþ2014.þTowardsþaþcircularþeconomy
%3AþAþzeroþwasteþprogrammeþforþEurope.&btnG¼&as_sdt¼1%2C5&as_
sdtp¼#0.
Evans, Steve, 2009. Towards a Sustainable Industrial System : with Recommenda-
tions for Education, Research, Industry and Policy. University of Cambridge,
Cambridge.
Evans, Steve, Rana, Padmakshi, Short, Samuel W., 2014. Final set of tools and
methods that enable analysis of future oriented, novel, sustainable, value
adding buisness models and value-networks. EU Sustain Value Project Deliv-
erable 2 (6).
Fahimnia, Behnam, Sarkis, Joseph, Davarzani, Hoda, 2015. Green supply chain
management: a review and bibliometric analysis. Int. J. Prod. Econ. 162,
101e114. https://doi.org/10.1016/j.ijpe.2015.01.003 (April).
Fleischmann, Moritz, Bloemhof-Ruwaard, Jacqueline M., Dekker, Rommert, van der
Laan, Erwin, van Nunen, Jo A.E.E., Van Wassenhove, Luk N., 1997. Quantitative
models for reverse logistics: a review. Eur. J. Oper. Res. 103 (1), 1e17. https://
doi.org/10.1016/S0377-2217(97)00230-0. North-Holland.
Geissdoerfer Martin, Doroteya Vladimirova, and Steve Evans. under review “Sus-
tainable Business Model Innovation: A Review.” Journal of Cleaner Production.
Geissdoerfer, Martin, Bocken Nancy, M.P., Hultink, Erik Jan, 2016. Design thinking to
enhance the sustainable business modelling process. J. Clean. Prod. 135,
1218e1232. https://doi.org/10.1016/j.jclepro.2016.07.020.
Geissdoerfer, Martin, Savaget, Paulo, Bocken, Nancy M.P., Hultink, Erik Jan, 2017a.
The circular economy e a new sustainability paradigm? J. Clean. Prod. 143,
757e768. https://doi.org/10.1016/j.jclepro.2016.12.048.
Geissdoerfer, Martin, Savaget, Paulo, Evans, Steve, 2017b. The Cambridge business
model innovation process. Procedia Manuf. 8, 262e269. https://doi.org/10.1016/
j.promfg.2017.02.033.
Giannakis, Mihalis, Croom, Simon R., 2004. Toward the development of a supply
chain management paradigm: a conceptual framework. J. Supply Chain Manag.
40 (2), 27e37. https://doi.org/10.1111/j.1745-493X.2004.tb00167.x.
Gimenez, Cristina, Tachizawa, Elcio M., 2012. Extending sustainability to suppliers:
a systematic literature review. Edited by Richard Wilding Supply Chain Manag.:
Int. J. 17 (5), 531e543. https://doi.org/10.1108/13598541211258591.
Giunipero, Larry, Handfield, Robert B., Eltantawy, Reham, 2006. Supply manage-
ment’s evolution: key skill sets for the supply manager of the future. Edited by
Paul D. Cousins Int. J. Oper. Prod. Manag. 26 (7), 822e844. https://doi.org/
10.1108/01443570610672257.
Govindan, Kannan, Soleimani, Hamed, Kannan, Devika, 2015. Reverse logistics and
closed-loop supply chain: a comprehensive review to explore the future. Eur. J.
Oper. Res. 240 (3), 603e626. https://doi.org/10.1016/j.ejor.2014.07.012.
Graedel, T.E., Allenby, Braden R., 1995. Industrial Ecology. Prentice Hall, Englewood
Cliffs, N.J.
Gupta, Sushil, Verma, Rohit, Victorino, Liana, 2009. Empirical research published in
production and operations management (1992-2005): trends and future
research directions. Prod. Oper. Manag. 15 (3), 432e448. https://doi.org/10.1111/
j.1937-5956.2006.tb00256.x.
Handfield, Robert B., Nichols Jr., Ernest L., 1998. Introduction to Supply Chain
Management. Pearson, London.
Ho, Danny C.K., Au, K.F., Newton, Edward, 2002. Empirical research on supply chain
management: a critical review and recommendations. Int. J. Prod. Res. 40 (17),
4415e4430. https://doi.org/10.1080/00207540210157204.
Homrich, A.S., Galv~ao, G., Abadia, L.G., Carvalho, M.M., 2017. The circular economy
umbrella: trends and gaps on integrating pathways. J. Clean. Prod. 175 https://
doi.org/10.1016/j.jclepro.2017.11.064.
Ilgin, Mehmet Ali, Gupta, Surendra M., 2009. Environmentally conscious
manufacturing and product recovery (ECMPRO): a review of the state of the art.
J. Environ. Manag. 91, 563e591. https://doi.org/10.1016/j.jenvman.2009.09.037.
Jagdev, H.S., Thoben, K., 2001. Anatomy of enterprise collaborations. Prod. Plann.
Contr. 12 (5), 437e451. https://doi.org/10.1080/0953728011004267.
Kauffman, Ralph G., 2002. Supply m anagement: what’s in a name? Or, do we know
who we are? Blackwell Publishing Ltd J. Supply Chain Manag. 38 (4), 46e50.
https://doi.org/10.1111/j.1745-493X.2002.tb00142.x.
Knyphausen-Aufsess, D Zu, Meinhardt, Y., 2002. Revisiting strategy: Ein Ansatz Zur
Systematisierung von Gesch€aftsmodellen. In: Thomas, Bieger, Nils,
Bickhoff, Rolf, Caspers, zu Knyphausen-Aufseß, Dodo, Reding, Kurt (Eds.),
Zukünftige Gesch€aftsmodelle. Springer, Berlin, Heidelberg.
Kouvelis, Panos, Chambers, Chester, Wang, Haiyan, 2009. Supply chain manage-
ment research and production and operations management: review, trends,
and opportunities. Prod. Oper. Manag. 15 (3), 449e469. https://doi.org/10.1111/
j.1937-5956.2006.tb00257.x.
Larson, Paul D., Halldorsson, Arni, 2002. What is SCM? And, where is it? J. Supply
Chain Manag. 38 (4), 36e44. https://doi.org/10.1111/j.1745-
493X.2002.tb00141.x.
Lin, Canhong, Choy, K.L., Ho, G.T.S., Chung, S.H., Lam, H.Y., 2014. Survey of green
vehicle routing problem: past and future trends. Expert Syst. Appl. 41,
1118e1138. https://doi.org/10.1016/j.eswa.2013.07.107.
Lozano, Rodrigo, 2008. Envisioning sustainability three-dimensionally. J. Clean.
Prod. 16 (17), 1838e1846. https://doi.org/10.1016/j.jclepro.2008.02.008.
Lummus, Rhonda R., Krumwiede, Dennis W., Vokurka, Robert J., 2001. The rela-
tionship of logistics to supply chain management: developing a common in-
dustry definition. Ind. Manag. Data Syst. 101 (8), 426e432. https://doi.org/
10.1108/02635570110406730.
Lyle, John Tillman, 1994. Regenerative Design for Sustainable Development. John
Wiley & Sons, New York.
MacCarthy, B.L., Jayarathne, P.G.S.a., 2011. Sustainable collaborative supply networks
in the international clothing industry: a comparative analysis of two retailers.
Prod. Plann. Contr. 23 (4), 252e268. https://doi.org/10.1080/
09537287.2011.627655.
Magretta, J., 2002. Why business models matter. Harv. Bus. Rev. 80, 86e92.
McDonough, William, Braungart, Michael, 2002. Cradle to Cradle: Remaking the
M. Geissdoerfer et al. / Journal of Cleaner Production 190 (2018) 712e721 721
Way We Make Things. North Point Press, New York.
Meade, Laura, Sarkis, Joseph, Presley, Adrien, 2007. The theory and practice of
reverse logistics. Int. J. Logist. Syst. Manag. 3 (1), 56e84. https://doi.org/10.1504/
IJLSM.2007.012070.
Meadows, Donella H., Meadows, Dennis L., Randers, Jorgen, Behrens III, William W.,
1972. The Limits to Growth: a Report for the Club of Rome’s Project on the
Predicament of Mankind, fifth ed. Universe Books, New York.
Meadows, Donella H., Randers, Jorgen, Meadows, Dennis, 2004. Limits to Growth:
the 30-Year Update, first ed. Chelsea Green Publishing, White River Junction.
Mentzer, John T., DeWitt, William, Keebler, James S., Min, Soonhong, Nix, Nancy W.,
Smith, Carlo D., Zacharia, Zach G., 2001. Defining supply chain management.
J. Bus. Logist. 22 (2), 1e25. https://doi.org/10.1002/j.2158-1592.2001.tb00001.x.
Blackwell Publishing Ltd.
Miles, M.B., Huberman, A.M., Salda~na, J., 2014. Qualitative data analysis, 3rd ed.
Sage, Los Angeles, Calif.
Monczka, Robert M., Handfield, Robert B., Giunipero, Larry C., Patterson, James L.,
2015. Purchasing and Supply Chain Management, sixth ed. Cengage Learning,
Boston.
Morgan, Shona D., Gagnon, Roger J., 2013. A systematic literature review of rema-
nufacturing scheduling. Int. J. Prod. Res. 51 (16), 4853e4879. https://doi.org/
10.1080/00207543.2013.774491.
New, Stephen J., 1997. The scope of supply chain management research. Supply
Chain Manag.: Int. J. 2 (1), 15e22. https://doi.org/10.1108/13598549710156321.
Nidumolu, Ram, Prahalad, C.K., Rangaswami, M.R., 2009. Why sustainability is now
the key driver of innovation. Harv. Bus. Rev. 87 (9), 56e64.
Ntabe, Eric N., Munson, Alison D., Santa-eulalia, Luis Antonio De, 2014. A systematic
literature review of the supply chain operations reference ( SCOR ) model
application with special attention to environmental issues a systematic litera-
ture review of the supply chain operations reference ( SCOR ) model application
with speci. Int. J. Prod. Econ. 169, 310e332.
Osterwalder, A., Pigneur, Y., 2005. Clarifying Business Models. Commun. Assoc. Inf.
Syst 16, 1e40.
Osterwalder, A., Pigneur, Y., 2013. Business Model Generation: a Handbook for Vi-
sionaries, Game Changers, and Challengers.
Pan, Yuan, Shu, Alex Du, Michael, Huang, I. Te, Hung Liu, I., Chang, E.E., Chi
Chiang, Pen, 2014. Strategies on implementation of waste-to-energy (WTE)
supply chain for circular economy system: a review. J. Clean. Prod. 108,
409e421. https://doi.org/10.1016/j.jclepro.2015.06.124. Elsevier Ltd.
Pauli, Gunter A., 2010. The Blue Economy: 10 Years, 100 Innovations, 100 Million
Jobs. Paradigm Publications, Taos, NM.
Porter, Michael E., 2004. Competitive Advantage. Free Press, New York.
Porter, Michael E., Kramer, Mark R., 2011. Creating shared value. J. Harv. Bus. Rev. 89
(1/2), 62e77.
Richardson, James, 2008. The business model: an integrative framework for strat-
egy execution. Strat. Change 17 (5e6), 133e144. https://doi.org/10.1002/jsc.821
M4-Citavi.
Ross, D.F., 1998. Competing through Supply Chain Management: Creating Market-
winning Strategies through Supply Chain Partnerships. Chapmann and Hall,
New York.
Rungtusanatham, M.Johnny, Thomas, Y Choi, David, G Hollingworth, Wu, Zhaohui,
Forza, Cipriano, 2003. Survey research in operations management: historical
analyses. J. Oper. Manag. 21 https://doi.org/10.1016/S0272-6963(03)00020-2.
Sachan, Amit, Datta, Subhash, 2005. Review of supply chain management and lo-
gistics research. Int. J. Phys. Distrib. Logist. Manag. 35 (9), 664e705. https://
doi.org/10.1108/09600030510632032.
Sarkis, Joseph, Zhu, Qinghua, Lai, Kee-Hung, 2011. An organizational theoretic re-
view of Green supply chain management literature. Int. J. Prod. Econ. 130, 1e15.
https://doi.org/10.1016/j.ijpe.2010.11.010.
Schaltegger, S., Hansen, E., Lüdeke-Freund, F., 2012. Business cases for sustainability
and the role of business model innovation. Int. J. Innov. Sustain. Dev. 6, 95e119.
Seuring, Stefan, Gold, Stefan, 2012. Conducting content analysis based literature
reviews in supply chain management. Supply Chain Manag.: Int. J. 17 (5),
544e555. https://doi.org/10.1108/13598541211258609. Edited by Richard
Wilding.
Seuring, Stefan, Müller, Martin, Müller, Martin, 2008. From a literature review to a
conceptual framework for sustainable supply chain management. J. Clean. Prod.
16 (15), 1699e1710. https://doi.org/10.1016/j.jclepro.2008.04.020.
Shapiro, Jeremy F., 2007. Modeling the Supply Chain. Thomson Learning, Belmont.
Simchi-Levi, David, Kaminsky, Philip, 2007. Designing and Managing the Supply
Chain: Concepts, Strategies, and Case Studies, third ed. McGraw- Hill, London.
Simmons, Helen, 2009. Case Study Research in Practice. SAGE Publications Ltd,
London.
Skjoett-Larsen, Tage, 1999. Supply chain management: a new challenge for re-
searchers and managers in logistics. Int. J. Logist. Manag. https://doi.org/
10.1108/09574099910805987.
Srivastava, Samir K., 2007. Green supply-chain management: a state-of-the-art
literature review. Int. J. Manag. Rev. 9 (1), 53e80. https://doi.org/10.1111/
j.1468-2370.2007.00202.x.
Stadtler, Hartmut, Kilger, Christoph, Meyr, Herbert, 2015. Supply Chain Manage-
ment and Advanced Planning: Concepts, Models, Software, and Case Studies.
Springer, Berlin, Heidelberg.
Stahel, W.R., 1982. The product life factor. An Inq. into Nat. Sustain. Soc. Role Priv.
Sect. (Series 1982 Mitchell Prize Pap. NARC.
Stahel, Walter, 2010. The Performance Economy. Palgrave MacMillan, Basingstoke,
New York.
Stindt, Dennis, Sahamie, Ramin, 2014. Review of research on closed loop supply
chain management in the process industry. Flex. Serv. Manuf. J. 26 (1e2),
268e293. https://doi.org/10.1007/s10696-012-9137-4.
Storey, John, Emberson, Caroline, Godsell, Janet, Harrison, Alan, 2006. Supply chain
management: theory, practice and future challenges. Edited by Paul D. Cousins
Co-editors: Benn Lawson Int. J. Oper. Prod. Manag. 26 (7), 754e774. https://
doi.org/10.1108/01443570610672220.
Stubbs, W., Cocklin, C., 2008. Conceptualizing a ‘sustainability business model. Or-
gan. Environ. 21, 103e127. https://doi.org/10.1177/1086026608318042.
Su, B., Heshmati, A., Geng, Y., Yu, X., 2013. A review of the circular economy in
China: moving from rhetoric to implementation. J. Clean. Prod. 42, 215e227.
https://doi.org/10.1016/j.jclepro.2012.11.020.
Taylor, Publisher, Thoben, K., S Jagdev, H., 2001. Typological issues in enterprise
networks. Production 12 (5), 421e436. https://doi.org/10.1080/
0953728011004266.
Tayur, Sridhar, Ganeshan, Ram, 1999. Quantitative Models for Supply Chain Man-
agement. Kluwer Academic, Boston.
United Nations, 2015. Global Sustainable Development Report. Lowe-Martin.
WCED, 1987. Report of the World Commission on Environment and Development ;:
Our Common Future Acronyms and Note on Terminology Chairman’ S Fore-
word. Oxford University Press, Oxford.
Webster, Ken, 2015. The Circular Economy: a Wealth of Flows. Isle of Wight. Ellen
MacArthur Foundation.
Weele, Arjan Van, 2014. Purchasing and Supply Chain Management: Analysis,
Strategy, Planning and Practice. Cengage Learning, Boston.
Winans, K., Kendall, A., Deng, H., 2017. The history and current applications of the
circular economy concept. Renew. Sustain. Energy Rev. 68, 825e833. https://
doi.org/10.1016/j.rser.2016.09.123.
Wu, Zhaohui, Pagell, Mark, 2011. Balancing priorities: decision-making in sustain-
able supply chain management. J. Oper. Manag. 29 (6), 577e590. https://
doi.org/10.1016/j.jom.2010.10.001. Elsevier B.V.
Yang, M., Evans, S., Vladimirova, D., Rana, P., 2016. Value uncaptured perspective for
sustainable business model innovation. J. Clean. Prod. 1e11. https://doi.org/
10.1016/j.jclepro.2016.07.102 (in press).
Yin, Robert K., 2009. Case Study Research: Design and Methods. Essential Guide to
Qualitative Methods in Organizational Research, vol. 5. https://doi.org/10.1097/
FCH.0b013e31822dda9e.
Yin, Robert K., 2010. Estudo de Caso: Planejamento E M�etodos, fourth ed. Bookman,
Porto Alegre.
Ying, Jiang, Li-jun, Zhou, 2012. Study on Green supply chain management based on
circular economy. Phys. Procedia 25, 1682e1688. https://doi.org/10.1016/
j.phpro.2012.03.295. Elsevier Srl.
Zhu, Qinghua, Sarkis, Joseph, 2004. Relationships between operational practices
and performance among early adopters of Green supply chain management
practices in Chinese manufacturing enterprises. J. Oper. Manag. 22 (3),
265e289. https://doi.org/10.1016/j.jom.2004.01.005.
Zott, C., Amit, R., Massa, L., 2011. The business model: recent developments and
future research. J. Manag. 37, 1019e1042. https://doi.org/10.1177/
0149206311406265.